Kerberos V5 Implementer’s Guide

MIT Information Systems

January 6, 2007

Contents

(1_Introductionl

2 Cache and Key table functions|

2.1.1 The krbb_cc_ops structure]

2.1.2 Per-type functions| o0

2.2 Replay cache tunctions| 0oL

2.2.1 The krb5_rc_ops structuref.

2.2.2 Per-type functions|

2.3 Key table functions|. o0 oL,

2.3.1 The krbb5_kt_ops structure|

12.3.2 Per-type functions that are always present|.

[2.3.3 Per-type functions to be included for write routines|

|3 Operating-system specific functions|

|4 Principal database functions|

[> Encryption system interface]

11

11

12

16
16
18
18

1 INTRODUCTION 2

7 _CRC-32 checksum functions 19

1 Introduction

This document is designed to aide the programmer who plans to change MIT’s
implementation of Kerberos significantly. It is geared towards programmers who
are already familiar with Kerberos and how MIT’s implementation is structured.

Some of the more basic information needed can be found in the API docu-
ment, although many functions have been repeated where additional informa-
tion has been included for the implementer. The function descriptions included
are up to date, even if the description of the functions may not be very verbose.

2 Cache and Key table functions

2.1 Credentials cache functions

The credentials cache functions (some of which are macros which call to specific
types of credentials caches) deal with storing credentials (tickets, session keys,
and other identifying information) in a semi-permanent store for later use by
different programs.

2.1.1 The krb5_cc_ops structure

In order to implement a new credentials cache type, the programmer should
declare a krb5_cc_ops structure, and fill in the elements of the structure ap-
propriately, by implementing each of the credential cache functions for the new
credentials cache type.

The prefix element specifies the prefix name of the the new credential cache
type. For example, if the prefix name is “FILE”, then if the program calls
krb5_cc_resolve() with a credential cache name such as “FILE:/tmp/krb5_
cc_15806", then krb5_cc_resolve() will call the resolve function (as defined
by the krb5_cc_ops structure where the prefix element is “FILE”) and pass it
the argument “/tmp/krb5_cc_15806”.

Before a new credentials cache type can be recognized by krb5_cc_resolve(),
it must be registered with the Kerberos library by calling krb5_cc_register().

typedef struct _krb5_cc_ops {

char *prefix;

char *(xget_name) ((krb5_ccache));

krb5_error_code (*resolve) ((krb5_ccache *, char *));

krb5_error_code (*gen_new) ((krb5_ccache *));

krb5_error_code (*init) ((krb5_ccache, krb5_principal));

krb5_error_code (*destroy) ((krb5_ccache));

krb5_error_code (*close) ((krb5_ccache));

krb5_error_code (*store) ((krb5_ccache, krb5_creds *));

krb5_error_code (*retrieve) ((krb5_ccache, krb5_flags,
krb5_creds *, krb5_creds *));

2 CACHE AND KEY TABLE FUNCTIONS 3

krb5_error_code (*get_princ) ((krb5_ccache,

krb5_principal *));

krb5_error_code (*get_first) ((krb5_ccache,

krb5_cc_cursor *));

krb5_error_code (*get_next) ((krb5_ccache, krb5_cc_cursor *,
krb5_creds *));

krb5_error_code (xend_get) ((krb5_ccache, krb5_cc_cursor *));

krb5_error_code (*remove_cred) ((krb5_ccache, krb5_flags,

krb5_creds *));
krb5_error_code (*set_flags) ((krb5_ccache, krb5_flags));
} krbb5_cc_ops;

2.1.2 Per-type functions

The following entry points must be implemented for each type of credentials
cache. However, resolve() and gen_new() are only called by the credentials
cache glue code. They are not called directly by the application.

krb5_error_code
resolve(/* OUT */
krb5_ccache * id,
J¥IN %/
char * residual)

Creates a credentials cache named by residual (which may be interpreted
differently by each type of ccache). The cache is not opened, but the cache
name is held in reserve.

krb5_error_code
gen_new(/* OUT */
krb5_ccache * id)

Creates a new credentials cache whose name is guaranteed to be unique.
The cache is not opened. *id is filled in with a krb5_ccache which may be
used in subsequent calls to ccache functions.

krb5_error_code
init(/* IN/OUT */
krb5_ccache id,
JEIN %/
krb5_principal primary_principal)

Creates/refreshes a credentials cache identified by id with primary prin-
cipal set to primary_principal. If the credentials cache already exists, its
contents are destroyed.

Modifies: cache identified by id.

krb5_error_code

destroy(/* IN */
krb5_ccache id)

resolve

gen_new

init

destroy

2 CACHE AND KEY TABLE FUNCTIONS 4

Destroys the credentials cache identified by id, invalidates id, and releases
any other resources acquired during use of the credentials cache. Requires that
id identifies a valid credentials cache. After return, id must not be used unless
it is first reinitialized.

krbb5_error_code
close(/* IN/OUT */
krb5_ccache id)

Closes the credentials cache id, invalidates id, and releases id and any
other resources acquired during use of the credentials cache. Requires that id
identifies a valid credentials cache. After return, id must not be used unless it
is first reinitialized.

krb5_error_code

store(/* IN */
krbb_ccache id,
krb5_creds * creds)

Stores creds in the cache id, tagged with creds->client. Requires that
id identifies a valid credentials cache.

krb5_error_code

retrieve(/* IN */
krb5_ccache id,
krb5_flags whichfields,
krb5_creds * mcreds,
/*OoUuT */
krb5_creds * creds)

Searches the cache id for credentials matching mcreds. The fields which are
to be matched are specified by set bits in whichfields, and always include the
principal name mcreds->server. Requires that id identifies a valid credentials
cache.

If at least one match is found, one of the matching credentials is returned
in *creds. The credentials should be freed using krb5_free_credentials().

krb5_error_code

get_princ(/* IN */
krbb_ccache id,
krb5_principal * principal)

Retrieves the primary principal of the credentials cache (as set by the
init() request) The primary principal is filled into *principal; the caller should
release this memory by calling krb5_free_principal() on *principal when
finished.

Requires that id identifies a valid credentials cache.

close

store

retrieve

get_princ

2 CACHE AND KEY TABLE FUNCTIONS)

krb5_error_code

get_first(/* IN */
krb5_ccache id,
/*ouT */

krb5_cc_cursor *

cursor)

Prepares to sequentially read every set of cached credentials. Requires that
id identifies a valid credentials cache opened by krb5_cc_open(). cursor is
filled in with a cursor to be used in calls to get_next().

krb5_error_code

get_next(/* IN */
krbb_ccache id,
/*ouT */
krb5_creds * creds,
/*IN/OUT */
krb5_cc_cursor * cursor)

Fetches the next entry from id, returning its values in *creds, and updates
xcursor for the next request. Requires that id identifies a valid credentials
cache and *cursor be a cursor returned by get_first() or a subsequent call to
get_next().

krb5_error_code

end_get(/* IN */
krb5_ccache id,
krb5_cc_cursor * cursor)

Finishes sequential processing mode and invalidates *cursor. *cursor
must never be re-used after this call.

Requires that id identifies a valid credentials cache and *cursor be a
cursor returned by get_first() or a subsequent call to get_next().

krb5_error_code

remove_cred(/* IN */
krbb5_ccache id,
krbb_flags which,
krb5_creds * cred)

Removes any credentials from id which match the principal name cred-;
server and the fields in cred masked by which. Requires that id identifies a
valid credentials cache.

krbb_error_code

set_flags(/* IN */
krb5_ccache id,
krb5_flags flags)

Sets the flags on the cache id to flags. Useful flags are defined in
<krb5/ccache.h>.

get_first

get_next

end_get

remove_cred

set_flags

2 CACHE AND KEY TABLE FUNCTIONS 6

2.2 Replay cache functions

The replay cache functions deal with verifying that AP_REQ’s do not con-
tain duplicate authenticators; the storage must be non-volatile for the site-
determined validity period of authenticators.

Each replay cache has a string name associated with it. The use of this
name is dependent on the underlying caching strategy (for file-based things,
it would be a cache file name). The caching strategy should use non-volatile
storage so that replay integrity can be maintained across system failures.

2.2.1 The krb5_rc_ops structure

In order to implement a new replay cache type, the programmer should declare
a krb5_rc_ops structure, and fill in the elements of the structure appropriately,
by implementing each of the replay cache functions for the new replay cache

type.

The prefix element specifies the prefix bf name of the the new replay cache
type. For example, if the prefix name is “dfl”, then if the program calls krb5_
rc_resolve() with a credential cache name such as “dfl:host”, then krb5_rc_
resolve() will call the resolve function (as defined by the krb5_rc_ops struc-
ture where the prefix element is “dfl”) and pass it the argument “host”.

Before a new replay cache type can be recognized by krb5_rc_resolve(),
it must be registered with the Kerberos library by calling krb5_rc_register().

typedef struct _krb5_rc_ops {
char *type;
krb5_error_code (*init) ((krb5_rcache,krb5_deltat));
krb5_error_code (*recover) ((krb5_rcache));
krb5_error_code (*destroy) ((krb5_rcache));
krb5_error_code (*close) ((krb5_rcache));
krb5_error_code (*store) ((krb5_rcache,krb5_donot_replay *));
krb5_error_code (xexpunge) ((krb5_rcache));
krb5_error_code (*get_span) ((krb5_rcache,krb5_deltat *));
char *(*get_name) ((krb5_rcache));
krb5_error_code (xresolve) ((krb5_rcache, char *));

} krb5_rc_ops;

2.2.2 Per-type functions
The following entry points must be implemented for each type of replay cache.

krb5_error_code
init(/* IN */
krb5_rcache id,
krb5_deltat auth_lifespan)

Creates/refreshes the replay cache identified by id and sets its authentica-
tor lifespan to auth_lifespan. If the replay cache already exists, its contents
are destroyed.

init

2 CACHE AND KEY TABLE FUNCTIONS 7

krb5_error_code
recover(/* IN */
krb5_rcache id)

Attempts to recover the replay cache id, (presumably after a system crash
or server restart).

krb5_error_code

destroy(/* IN */
krb5_rcache id)

Destroys the replay cache id. Requires that id identifies a valid replay
cache.

krb5_error_code
close(/* IN */
krb5_rcache id)

Closes the replay cache id, invalidates id, and releases any other resources
acquired during use of the replay cache. Requires that id identifies a valid
replay cache.

krb5_error_code

store(/* IN */
krb5_rcache id,
krb5_donot_replay * rep)

Stores rep in the replay cache id. Requires that id identifies a valid replay
cache.

Returns KRB5KRB_AP_ERR_REPEAT if rep is already in the cache.

May also return permission errors, storage failure errors.

krb5_error_code
expunge(/* IN */
krb5_rcache id)

Removes all expired replay information (i.e. those entries which are older
than then authenticator lifespan of the cache) from the cache id. Requires that
id identifies a valid replay cache.

krb5_error_code
get_span(/* IN */
krb5_rcache id,
/*ouT */
krb5_deltat * auth_lifespan)

Fills in auth_lifespan with the lifespan of the cache id. Requires that id
identifies a valid replay cache.

recover

destroy

close

store

expunge

get_span

2 CACHE AND KEY TABLE FUNCTIONS 8

krb5_error_code
resolve(/* IN/OUT */
krb5_rcache id,
/¥ IN %/
char * name)

Initializes private data attached to id. This function MUST be called
before the other per-replay cache functions.

Requires that id points to allocated space, with an initialized id->ops
field.

Since resolve() allocates memory, close() must be called to free the allo-
cated memory, even if neither init() or recover() were successfully called by
the application.

char *
krb5_rc_get_name(/* IN */
krb5_rcache id)

Returns the name (excluding the type) of the rcache id. Requires that id
identifies a valid replay cache.

2.3 Key table functions

The key table functions deal with storing and retrieving service keys for use by
unattended services which participate in authentication exchanges.

Keytab routines should all be atomic. Before a routine returns it must
make sure that all non-sharable resources it acquires are released and in a
consistent state. For example, an implementation is not allowed to leave a file
open for writing or to have a lock on a file.

Note that all keytab implementations must support multiple concurrent
sequential scans. Another detail to note is that the order of values returned from
get_next() is unspecified and may be sorted to the implementor’s convenience.

2.3.1 The krb5_kt_ops structure

In order to implement a new key table type, the programmer should declare a
krb5_kt_ops structure, and fill in the elements of the structure appropriately,
by implementing each of the key table functions for the new key table type.

In order to reduce the size of binary programs when static linking is used,
it is common to provide two krb5_kt_ops structures for each key table type,
one for reading only in which the pointers to the add and delete functions are
zero, and one for reading and writing.

typedef struct _krb5_kt_ops {
char *prefix;
/* routines always present */
krb5_error_code (*resolve) ((char *,
krb5_keytab *));

resolve

rc_get_name

2 CACHE AND KEY TABLE FUNCTIONS 9

krb5_error_code (*get_name) ((krb5_keytab,
char *,
int));

krb5_error_code (*close) ((krb5_keytab));

krb5_error_code (*get) ((krb5_keytab,
krb5_principal,
krb5_kvno,
krb5_keytab_entry *));

krb5_error_code (*start_seq_get) ((krb5_keytab,
krb5_kt_cursor *));

krb5_error_code (*get_next) ((krb5_keytab,
krbb_keytab_entry x*,
krb5_kt_cursor *));

krb5_error_code (*end_get) ((krb5_keytab,
krb5_kt_cursor *));

/* routines to be included on extended version (write routines) */

krb5_error_code (*add) ((krb5_keytab,
krb5_keytab_entry *));

krb5_error_code (*remove) ((krb5_keytab,
krb5_keytab_entry *));

} krb5_kt_ops;

2.3.2 Per-type functions that are always present

The following entry points must be implemented for each type of key table.
However, resolve(), remove() and add() are only called by the key table glue
code. They are not called directly by the application.

however, application programs are not expected to call resolve(), re-
move(), or add() directly.

krb5_error_code resolve
resolve(/* IN */

char * residual,

/*ouT */

krb5_keytab * id)

Fills in *id with a handle identifying the keytab with name “residual”.
The interpretation of “residual” is dependent on the type of keytab.

krb5_error_code get_name
get_name(/* IN */

krb5_keytab id,

/*ouT */

char * name,

/¥ IN %/

int namesize)

name is filled in with the first namesize bytes of the name of the keytab
identified by id(). If the name is shorter than namesize, then ,
name will be null-terminated.

2 CACHE AND KEY TABLE FUNCTIONS 10

krb5_error_code close
close(/* IN */
krb5_keytab id)

Closes the keytab identified by id and invalidates id, and releases any
other resources acquired during use of the key table.

Requires that id identifies a valid credentials cache.

krb5_error_code get
get(/* IN %/

krb5_keytab id,

krb5_principal principal,

krb5_kvno vno,

/*ouT */

krb5_keytab_entry * entry)

Searches the keytab identified by id for an entry whose principal matches
principal and whose key version number matches vno. If vno is zero, the first
entry whose principal matches is returned.

This routine should return an error code if no suitable entry is found.
If an entry is found, the entry is returned in *entry; its contents should be
deallocated by calling close() when no longer needed.

krb5_error_code close
close(/* IN/OUT */
krb5_keytab_entry * entry)

Releases all storage allocated for entry, which must point to a structure
previously filled in by get() or get_next().

krb5_error_code start_seq_get
start_seq_get(/* IN */

krb5_keytab id,

/*ouT */

krb5_kt_cursor * cursor)

Prepares to read sequentially every key in the keytab identified by id.
cursor is filled in with a cursor to be used in calls to get_next().

krb5_error_code get_next
get_next(/* IN */

krb5_keytab id,

/*OoUuT */

krb5_keytab_entry * entry,

/*IN/OUT */

krb5_kt_cursor cursor)

Fetches the “next” entry in the keytab, returning it in *entry, and updates
xcursor for the next request. If the keytab changes during the sequential get, an
error must be guaranteed. *entry should be freed after use by calling close().

3 OPERATING-SYSTEM SPECIFIC FUNCTIONS 11

Requires that id identifies a valid credentials cache. and *cursor be a
cursor returned by start_seq_get() or a subsequent call to get_next().

krb5_error_code

end_get(/* IN */
krb5_keytab id,
krb5_kt_cursor * cursor)

Finishes sequential processing mode and invalidates cursor, which must
never be re-used after this call.

Requires that id identifies a valid credentials cache. and *cursor be a
cursor returned by start_seq_get() or a subsequent call to get_next().

2.3.3 Per-type functions to be included for write routines

krb5_error_code

add(/* IN */
krb5_keytab id,
krb5_keytab_entry * entry)

Stores entry in the keytab id. Fails if the entry already exists.

This operation must, within the constraints of the operating system, not
return until it can verify that the write has completed succesfully. For example,
in a UNIX file-based implementation, this routine (or the part of the underlying
implementation that it calls) would be responsible for doing an fsync() on the
file before returning.

This routine should return an error code if entry is already present in the
keytab or if the key could not be stored (quota problem, etc).

krb5_error_code

remove(/* IN */
krb5_keytab id,
krb5_keytab_entry * entry)

Searches the keytab id for an entry that exactly matches entry. If one is
found, it is removed from the keytab.

3 Operating-system specific functions

The operating-system specific functions provide an interface between the other
parts of the 1ibkrb5.a libraries and the operating system.

Beware! Any of the functions below are allowed to be implemented as
macros. Prototypes for functions can be found in <krb5/libos-proto.h>;
other definitions (including macros, if used) are in <krb5/libos.h>.

The following global symbols are provided in libos.a. If you wish to
substitute for any of them, you must substitute for all of them (they are all
declared and initialized in the same object file):

end_get

add

remove

4 PRINCIPAL DATABASE FUNCTIONS 12

extern char *krb5_config_file: name of configuration file

extern char *krb5_trans_file: name of hostname/realm name translation

file
extern char *krb5_defkeyname: default name of key table file
extern char *krb5_lname_file: name of aname/Iname translation database
extern int krb5_max_dgram_size: maximum allowable datagram size

extern int krb5_max_skdc_timeout: maximum per-message KDC reply time-
out

extern int krb5_skdc_timeout_shift: shift factor (bits) to exponentially back-
off the KDC timeouts

extern int krb5_skdc_timeout_1: initial KDC timeout
extern char *krb5_kdc_udp_portname: name of KDC UDP port

extern char *krb5_default_pwd_prompti: first prompt for password read-
ing.

extern char *krb5_default_pwd_prompt2: second prompt

4 Principal database functions

The libkdb.a library provides a principal database interface to be used by the
Key Distribution center and other database manipulation tools.

krb5_error_code
krb5_db_set_name(/* IN */
char * name)

Set the name of the database to name.

Must be called before krb5_db_init() or after krb5_db_fini(); must not
be called while db functions are active.

krb5_error_code

krb5_db_set_nonblocking(/* IN */
krb5_boolean newmode,
/*ouT */
krb5_boolean * oldmode)

Changes the locking mode of the database functions, returning the previous
mode in *oldmode.

If newmode is TRUE, then the database is put into non-blocking mode,
which may result in “database busy” error codes from the get, put, and iterate
routines.

If newmode is FALSE, then the database is put into blocking mode, which
may result in delays from the get, put and iterate routines.

The default database mode is blocking mode.

db_set_name

db_set_nonblocking

4 PRINCIPAL DATABASE FUNCTIONS 13

krb5_error_code db_init
krb5_db_init()

Called before using krb5_db_get_principal(), krb5_db_put_principal(),
krb5_db_iterate(), and krb5_db_set_nonblocking().

Does any required initialization.

krb5_error_code db_fini
krb5_db_fini()

Called after all database operations are complete, to perform any required
clean-up.

krb5_error_code db_get_age
krb5_db_get_age(/* IN */

char * db_name,

/*ouT */

time_t * age)

Retrieves the age of the database db_name() (or the current default
database if db_name() is NULL).

xage is filled in in local system time units, and represents the last modifi-
cation time of the database.

krb5_error_code db_create
krb5_db_create(/* IN */
char * db_name)

Creates a new database named db_name(). Will not create a database by
that name if it already exists. The database must be populated by the caller
by using krb5_db_put_principal().

krb5_error_code db_rename
krb5_db_rename(/* IN */

char * source,

char * dest)

Renames the database ,
source to ,
dest

Any database named ,
dest is destroyed.

4 PRINCIPAL DATABASE FUNCTIONS 14

krb5_error_code

krb5_db_get_principal(/* IN */
krb5_principal searchfor,
/*ouT */
krb5_db_entry * entries,
/*IN/OUT */
int * nentries,
/*ouT */

krb5_boolean * more)

Retrieves the principal records named by searchfor.

entries must point to an array of *nentries krb5_db_entry structures.
At most *nentries structures are filled in, and *nentries is modified to reflect
the number actually returned.

*nentries must be at least one (1) when this function is called.

*more is set to TRUE if there are more records that wouldn’t fit in the
available space, and FALSE otherwise.

The principal structures filled in have pointers to allocated storage; krb5_
db_free_principal() should be called with entries and *nentries in order
to free this storage when no longer needed.

void

krb5_db_free_principal(/* IN */
krb5_db_entry * entries,
int nentries)

Frees allocated storage held by entries as filled in by krb5_db_get_
principal().

krb5_error_code

krb5_db_put_principal(/* IN */
krb5_db_entry * entries,
int * nentries)

Stores the *nentries principal structures pointed to by entries in the
database.

*nentries is updated upon return to reflect the number of records acutally
stored; the first *nentries records will have been stored in the database.

krb5_error_code
krb5_db_iterate(/* IN */
krb5_error_code (*func) (krb5_pointer ,
krb5_db_entry *),
krb5_pointer iterate_arg)

Iterates over the database, fetching every entry in an unspecified order and
calling (#func) (iterate_arg, principal) where principal points to a record
from the database.

If (xfunc)() ever returns an error code, the iteration should be aborted

db_get_principal

db_free_principal

db_put_principal

db_iterate

4 PRINCIPAL DATABASE FUNCTIONS 15

and that error code is returned by this function.

krb5_error_code

krb5_db_store_mkey(/* IN */
char * keyfile,
krb5_principal mname,
krb5_keyblock * key)

Put the KDC database master key into the file keyfile. If keyfile is
NULL, then a default file name derived from the principal name mname is used.

krb5_error_code

krb5_db_fetch_mkey(/* IN */
krb5_principal mname,
krb5_encrypt_block * eblock,
krb5_boolean fromkeyboard,
krb5_boolean twice,
krb5_data salt,
/*IN/OUT */
krb5_keyblock * key)

Get the KDC database master key from somewhere, filling it into *key.
key->keytype should be set to the desired key type.

If fromkeyboard is TRUE, then the master key is read as a password
from the user’s terminal. In this case: eblock should point to a block with
an appropriate string_to_key() function; if twice is TRUE, the password is
read twice for verification; and if salt is non-NULL, it is used as the salt when
converting the typed password to the master key.

If fromkeyboard is false, then the key is read from a file whose name is
derived from the principal name mname. Therefore, eblock, twice and salt
are ignored.

mname is the name of the key sought; this is often used by string_to_key/()
to aid in conversion of the password to a key.

krb5_error_code

krb5_kdb_encrypt_key(/* IN */
krb5_encrypt_block * eblock,
const krb5_keyblock * in,
/% IN/OUT */
krb5_encrypted_keyblock * out)

Encrypt a key for storage in the database. eblock is used to encrypt the
key in in into out; the storage pointed to by *out is allocated before use and
should be freed when the caller is finished with it.

db_store_mkey

db_fetch_mkey

kdb_encrypt_key

5 ENCRYPTION SYSTEM INTERFACE 16

krb5_error_code
krb5_kdb_decrypt_key(/* IN */
krb5_encrypt_block * eblock,
const krb5_encrypted_keyblock * in,
/*IN/OUT */
krb5_keyblock * out)

Decrypt a key from storage in the database. eblock is used to decrypt the
key in in into out; the storage pointed to by *out is allocated before use and
should be freed when the caller is finished with it.

krb5_error_code

krb5_db_setup_mkey_name(/* IN */
const char *keyname,
const char *realm,
/*ouT */
char ** fullname,
krb5_principal * principal)

Given a key name keyname and a realm name realm, construct a principal
which can be used to fetch the master key from the database. This principal is
filled into *principal; *principal should be freed by krb5_free_principal()
when the caller is finished.

If keyname is NULL, the default key name will be used.

If fullname is not NULL, it is set to point to a string representation of
the complete principal name; its storage may be freed by calling free() on
*fullname.

5 Encryption system interface

Kerberos v5 has the ability to use multiple encryption systems. Any encryption
system which desires to link with and be usable from the MIT Kerberos v5
implementation must implement at least this interface:

5.1 Functional interface

krb5_error_code
encrypt_func(krb5_const_pointer in,
krb5_pointer out,
const size_t size,
krb5_encrypt_block * eblock,
krb5_pointer ivec)

Encrypts size bytes at in, storing result in out. eblock points to an
encrypt block which has been initialized by process_key().

in must include sufficient space beyond the size bytes of input data to
hold pad and redundancy check bytes; the macro krb5_encrypt_size() can be
used to compute this size.

kdb_decrypt_key

db_setup_mkey_name

encrypt_func

5 ENCRYPTION SYSTEM INTERFACE 17

out must be preallocated by the caller to contain sufficient storage to hold
the output; the macro krb5_encrypt_size() can be used to compute this size.

ivec points to an initial vector/seed to be used in the encryption. If null,
the cryptosystem may choose an appropriate initialization vector.

krb5_error_code
decrypt_func(krb5_const_pointer in,
krb5_pointer out,
const size_t size,
krb5_encrypt_block * eblock,
krb5_pointer ivec)

Decrypts size bytes at in, storing result in out. eblock points to an
encrypt block which has been initialized by process_key/().

size must be a multiple of the encryption block size.

out must be preallocated by the caller to contain sufficient storage to hold
the output; this is guaranteed to be no more than the input size.

ivec points to an initial vector/seed to be used in the decryption. If null,
the cryptosystem may choose an appropriate ivec.

krb5_error_code
process_key(krb5_encrypt_block * eblock,
const krb5_keyblock * keyblock)

Does any necessary key preprocessing (such as computing key schedules
for DES). eblock->crypto_entry must be set by the caller; the other elements
of eblock are to be assigned by this function. [In particular, eblock->key
must be set by this function if the key is needed in raw form by the encryption
routine.]

The caller may not move or reallocate keyblock before calling finish_key ()
on eblock.

krb5_error_code
finish_key (krb5_encrypt_block * eblock)

Does any necessary clean-up on eblock (such as releasing resources held
by eblock->priv.

krb5_error_code

string_to_key(const krb5_keytype keytype,
krb5_keyblock * keyblock,
const krb5_data * data,
const krb5_data salt)

Converts the string pointed to by data into an encryption key of type
keytype. *keyblock is filled in with the key info; in particular, keyblock->
contents is to be set to allocated storage. It is the responsibility of the caller
to release this storage when the generated key no longer needed.

The routine may use salt to seed or alter the conversion algorithm.

decrypt_func

process_key

finish_key

string_to_key

5 ENCRYPTION SYSTEM INTERFACE 18

If the particular function called does not know how to make a key of type
keytype, an error may be returned.

krb5_error_code
init_random_key(const krb5_keyblock * seedblock,
krb5_pointer * seed)

Initialize the random key generator using the encryption key seedblock
and allocating private sequence information, filling in *seed with the address of
such information. *seed is to be passed to random_key() to provide sequence
information.

krb5_error_code
finish_random_key (krb5_pointer * seed)

Free any resources held by seed and assigned by init_random_key().

krb5_error_code
random_key(krb5_pointer * seed,
krb5_keyblock ** keyblock)

Generate a random encryption key, allocating storage for it and filling in
the keyblock address in *keyblock. When the caller has finished using the
keyblock, he should call krb5_free_keyblock() to release its storage.

5.2 Other data elements

In addition to the above listed function entry points, each encryption sys-
tem should have an entry in krb5_csarray and a krb5_cryptosystem_entry
structure describing the entry points and key and padding sizes for the encryp-
tion system.

5.3 DES functions

The DES functions conform to the encryption interface required by the Kerberos
version 5 library, and provide an encryption mechanism based on the DES
Cipher-block chaining mode (CBC), with the addition of a cyclical redundancy
check (CRC-32) for integrity checking upon decryption.

The functions have the same signatures as those described by the main
library document; the names are:

mit_des_encrypt_func()
mit_des_decrypt_func()
mit_des_process_key/()
mit_des_finish_key()
mit_des_string_to_key()

mit_des_init_random_key/()

init_random_key

finish_random_key

random_key

6 CHECKSUM INTERFACE 19

mit_des_finish_random_key()

mit_des_random_key/()

The krb5_cryptosystem_entry for this cryptosystem ismit_des_cryptosystem_

entry.

6 Checksum interface

Kerberos v5 has the ability to use multiple checksum algorithms. Any checksum
implementation which desires to link with and be usable from the MIT Kerberos
v5 implementation must implement this interface:

6.1 Functional interface

krb5_error_code

sum_func(/* IN */
krb5_pointer in,
size_t in_length,
krb5_pointer seed,
size_t seed_length,
/*OoUuT */
krb5_checksum * outcksum)

This routine computes the desired checksum over in_length bytes at in.
seed_length bytes of a seed (usually an encryption key) are pointed to by
seed. Some checksum algorithms may choose to ignore seed. If seed_length
is zero, then there is no seed available. The routine places the resulting value
into outcksum->contents.

outcksum->contents must be set by the caller to point to enough stor-
age to contain the checksum; the size necessary is an element of the krb5_
checksum_entry structure.

6.2 Other data elements

In addition to the above listed function entry point, each checksum algorithm
should have an entry in krb5_cksumarray and a krb5_checksum_entry struc-
ture describing the entry points and checksum size for the algorithm.

7 CRC-32 checksum functions

The libcre32.a library provides an implementation of the CRC-32 checksum
algorithm which conforms to the interface required by the Kerberos library.

sum_func

7 CRC-32 CHECKSUM FUNCTIONS 20

static krb5_error_code

crc32_sum_func(/* IN */
krb5_pointer in,
size_t in_length,
krbb_pointer seed,
size_t seed_length,
/*ouT */
krb5_checksum * outcksum)

This routine computes a CRC-32 checksum over in_length bytes at in,
and places the resulting value into outcksum->contents. seed is ignored.

outcksum->contents must be set by the caller to point to at least 4 bytes
of storage.

cre32_sum_func

Index
add,
close, 3} [6} [7} [

cre32_sum_func,

db_name,
decrypt_func,
destroy, [3] [6]

encrypt_func,
end_get, [4

krb5_kdb_encrypt_key,
krb5_rc_get_name, [7]
krb5_rc_register, [f
krb5_rc_resolve,

mit_des_decrypt_func, [17]
mit_des_encrypt_func,
mit_des_finish_key,
mit_des_finish_random_key,
mit_des_init_random_key,
mit_des_process_key, [17]

expunge, [f] mit_des_random_key, [I§
i ing_to_key, |1
finish_key, mit_des_string_to_key, [1§]

finish_random_key, process_key, [I5] [16]

free,

fsync, [10] random_key,
recover, [6} [7]

gen_new, [2] remove, [§] [I0]

get, [remove_cred,

get_first, [4] resolve, 2] [7]

get_name, retrieve, [3]

get_next, @] [7} [0 [I0]

get_princ, [3] set_flags,

get_span, [7] start_seq_get, [0 [I0]

) store, [3} [6]

id, [9] string_to_key,

init, 2| [[6] [7 sum_func, [T§]

init_random_key,

krb5_cc_open, [
krb5_cc_register,
krb5_cc_resolve, [1] 2]
krb5_db_create, [[2]
krb5_db_fetch_mkey,
krb5_db_fini,
krb5_db_free_principal,
krb5_db_get_age,
krb5_db_get_principal, [[2] [T3]
krb5_db_init,
krb5_db_iterate,
krb5_db_put_principal,
krb5_db_rename,
krb5_db_set_name,
krb5_db_set_nonblocking, [IT] [12]
krb5_db_setup_mkey_name,
krb5_db_store_mkey,
krb5_encrypt_size,
krb5_free_credentials, [3]
krb5_free_keyblock, [17]
krb5_free_principal, [4]
krb5_kdb_decrypt_key,

21

	Introduction
	Cache and Key table functions
	Credentials cache functions
	The krb5_cc_ops structure
	Per-type functions

	Replay cache functions
	The krb5_rc_ops structure
	Per-type functions

	Key table functions
	The krb5_kt_ops structure
	Per-type functions that are always present
	Per-type functions to be included for write routines

	Operating-system specific functions
	Principal database functions
	Encryption system interface
	Functional interface
	Other data elements
	DES functions

	Checksum interface
	Functional interface
	Other data elements

	CRC-32 checksum functions

