libstdc++
|
00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2016 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_map.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{map} 00054 */ 00055 00056 #ifndef _STL_MAP_H 00057 #define _STL_MAP_H 1 00058 00059 #include <bits/functexcept.h> 00060 #include <bits/concept_check.h> 00061 #if __cplusplus >= 201103L 00062 #include <initializer_list> 00063 #include <tuple> 00064 #endif 00065 00066 namespace std _GLIBCXX_VISIBILITY(default) 00067 { 00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00069 00070 /** 00071 * @brief A standard container made up of (key,value) pairs, which can be 00072 * retrieved based on a key, in logarithmic time. 00073 * 00074 * @ingroup associative_containers 00075 * 00076 * @tparam _Key Type of key objects. 00077 * @tparam _Tp Type of mapped objects. 00078 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00079 * @tparam _Alloc Allocator type, defaults to 00080 * allocator<pair<const _Key, _Tp>. 00081 * 00082 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00083 * <a href="tables.html#66">reversible container</a>, and an 00084 * <a href="tables.html#69">associative container</a> (using unique keys). 00085 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00086 * value_type is std::pair<const Key,T>. 00087 * 00088 * Maps support bidirectional iterators. 00089 * 00090 * The private tree data is declared exactly the same way for map and 00091 * multimap; the distinction is made entirely in how the tree functions are 00092 * called (*_unique versus *_equal, same as the standard). 00093 */ 00094 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00095 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00096 class map 00097 { 00098 public: 00099 typedef _Key key_type; 00100 typedef _Tp mapped_type; 00101 typedef std::pair<const _Key, _Tp> value_type; 00102 typedef _Compare key_compare; 00103 typedef _Alloc allocator_type; 00104 00105 private: 00106 // concept requirements 00107 typedef typename _Alloc::value_type _Alloc_value_type; 00108 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00109 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00110 _BinaryFunctionConcept) 00111 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00112 00113 public: 00114 class value_compare 00115 : public std::binary_function<value_type, value_type, bool> 00116 { 00117 friend class map<_Key, _Tp, _Compare, _Alloc>; 00118 protected: 00119 _Compare comp; 00120 00121 value_compare(_Compare __c) 00122 : comp(__c) { } 00123 00124 public: 00125 bool operator()(const value_type& __x, const value_type& __y) const 00126 { return comp(__x.first, __y.first); } 00127 }; 00128 00129 private: 00130 /// This turns a red-black tree into a [multi]map. 00131 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00132 rebind<value_type>::other _Pair_alloc_type; 00133 00134 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00135 key_compare, _Pair_alloc_type> _Rep_type; 00136 00137 /// The actual tree structure. 00138 _Rep_type _M_t; 00139 00140 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits; 00141 00142 public: 00143 // many of these are specified differently in ISO, but the following are 00144 // "functionally equivalent" 00145 typedef typename _Alloc_traits::pointer pointer; 00146 typedef typename _Alloc_traits::const_pointer const_pointer; 00147 typedef typename _Alloc_traits::reference reference; 00148 typedef typename _Alloc_traits::const_reference const_reference; 00149 typedef typename _Rep_type::iterator iterator; 00150 typedef typename _Rep_type::const_iterator const_iterator; 00151 typedef typename _Rep_type::size_type size_type; 00152 typedef typename _Rep_type::difference_type difference_type; 00153 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00154 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00155 00156 // [23.3.1.1] construct/copy/destroy 00157 // (get_allocator() is also listed in this section) 00158 00159 /** 00160 * @brief Default constructor creates no elements. 00161 */ 00162 map() 00163 #if __cplusplus >= 201103L 00164 noexcept(is_nothrow_default_constructible<allocator_type>::value) 00165 #endif 00166 : _M_t() { } 00167 00168 /** 00169 * @brief Creates a %map with no elements. 00170 * @param __comp A comparison object. 00171 * @param __a An allocator object. 00172 */ 00173 explicit 00174 map(const _Compare& __comp, 00175 const allocator_type& __a = allocator_type()) 00176 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00177 00178 /** 00179 * @brief %Map copy constructor. 00180 * @param __x A %map of identical element and allocator types. 00181 * 00182 * The newly-created %map uses a copy of the allocation object 00183 * used by @a __x. 00184 */ 00185 map(const map& __x) 00186 : _M_t(__x._M_t) { } 00187 00188 #if __cplusplus >= 201103L 00189 /** 00190 * @brief %Map move constructor. 00191 * @param __x A %map of identical element and allocator types. 00192 * 00193 * The newly-created %map contains the exact contents of @a __x. 00194 * The contents of @a __x are a valid, but unspecified %map. 00195 */ 00196 map(map&& __x) 00197 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00198 : _M_t(std::move(__x._M_t)) { } 00199 00200 /** 00201 * @brief Builds a %map from an initializer_list. 00202 * @param __l An initializer_list. 00203 * @param __comp A comparison object. 00204 * @param __a An allocator object. 00205 * 00206 * Create a %map consisting of copies of the elements in the 00207 * initializer_list @a __l. 00208 * This is linear in N if the range is already sorted, and NlogN 00209 * otherwise (where N is @a __l.size()). 00210 */ 00211 map(initializer_list<value_type> __l, 00212 const _Compare& __comp = _Compare(), 00213 const allocator_type& __a = allocator_type()) 00214 : _M_t(__comp, _Pair_alloc_type(__a)) 00215 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00216 00217 /// Allocator-extended default constructor. 00218 explicit 00219 map(const allocator_type& __a) 00220 : _M_t(_Compare(), _Pair_alloc_type(__a)) { } 00221 00222 /// Allocator-extended copy constructor. 00223 map(const map& __m, const allocator_type& __a) 00224 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { } 00225 00226 /// Allocator-extended move constructor. 00227 map(map&& __m, const allocator_type& __a) 00228 noexcept(is_nothrow_copy_constructible<_Compare>::value 00229 && _Alloc_traits::_S_always_equal()) 00230 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { } 00231 00232 /// Allocator-extended initialier-list constructor. 00233 map(initializer_list<value_type> __l, const allocator_type& __a) 00234 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00235 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00236 00237 /// Allocator-extended range constructor. 00238 template<typename _InputIterator> 00239 map(_InputIterator __first, _InputIterator __last, 00240 const allocator_type& __a) 00241 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00242 { _M_t._M_insert_unique(__first, __last); } 00243 #endif 00244 00245 /** 00246 * @brief Builds a %map from a range. 00247 * @param __first An input iterator. 00248 * @param __last An input iterator. 00249 * 00250 * Create a %map consisting of copies of the elements from 00251 * [__first,__last). This is linear in N if the range is 00252 * already sorted, and NlogN otherwise (where N is 00253 * distance(__first,__last)). 00254 */ 00255 template<typename _InputIterator> 00256 map(_InputIterator __first, _InputIterator __last) 00257 : _M_t() 00258 { _M_t._M_insert_unique(__first, __last); } 00259 00260 /** 00261 * @brief Builds a %map from a range. 00262 * @param __first An input iterator. 00263 * @param __last An input iterator. 00264 * @param __comp A comparison functor. 00265 * @param __a An allocator object. 00266 * 00267 * Create a %map consisting of copies of the elements from 00268 * [__first,__last). This is linear in N if the range is 00269 * already sorted, and NlogN otherwise (where N is 00270 * distance(__first,__last)). 00271 */ 00272 template<typename _InputIterator> 00273 map(_InputIterator __first, _InputIterator __last, 00274 const _Compare& __comp, 00275 const allocator_type& __a = allocator_type()) 00276 : _M_t(__comp, _Pair_alloc_type(__a)) 00277 { _M_t._M_insert_unique(__first, __last); } 00278 00279 // FIXME There is no dtor declared, but we should have something 00280 // generated by Doxygen. I don't know what tags to add to this 00281 // paragraph to make that happen: 00282 /** 00283 * The dtor only erases the elements, and note that if the elements 00284 * themselves are pointers, the pointed-to memory is not touched in any 00285 * way. Managing the pointer is the user's responsibility. 00286 */ 00287 00288 /** 00289 * @brief %Map assignment operator. 00290 * @param __x A %map of identical element and allocator types. 00291 * 00292 * All the elements of @a __x are copied, but unlike the copy 00293 * constructor, the allocator object is not copied. 00294 */ 00295 map& 00296 operator=(const map& __x) 00297 { 00298 _M_t = __x._M_t; 00299 return *this; 00300 } 00301 00302 #if __cplusplus >= 201103L 00303 /// Move assignment operator. 00304 map& 00305 operator=(map&&) = default; 00306 00307 /** 00308 * @brief %Map list assignment operator. 00309 * @param __l An initializer_list. 00310 * 00311 * This function fills a %map with copies of the elements in the 00312 * initializer list @a __l. 00313 * 00314 * Note that the assignment completely changes the %map and 00315 * that the resulting %map's size is the same as the number 00316 * of elements assigned. Old data may be lost. 00317 */ 00318 map& 00319 operator=(initializer_list<value_type> __l) 00320 { 00321 _M_t._M_assign_unique(__l.begin(), __l.end()); 00322 return *this; 00323 } 00324 #endif 00325 00326 /// Get a copy of the memory allocation object. 00327 allocator_type 00328 get_allocator() const _GLIBCXX_NOEXCEPT 00329 { return allocator_type(_M_t.get_allocator()); } 00330 00331 // iterators 00332 /** 00333 * Returns a read/write iterator that points to the first pair in the 00334 * %map. 00335 * Iteration is done in ascending order according to the keys. 00336 */ 00337 iterator 00338 begin() _GLIBCXX_NOEXCEPT 00339 { return _M_t.begin(); } 00340 00341 /** 00342 * Returns a read-only (constant) iterator that points to the first pair 00343 * in the %map. Iteration is done in ascending order according to the 00344 * keys. 00345 */ 00346 const_iterator 00347 begin() const _GLIBCXX_NOEXCEPT 00348 { return _M_t.begin(); } 00349 00350 /** 00351 * Returns a read/write iterator that points one past the last 00352 * pair in the %map. Iteration is done in ascending order 00353 * according to the keys. 00354 */ 00355 iterator 00356 end() _GLIBCXX_NOEXCEPT 00357 { return _M_t.end(); } 00358 00359 /** 00360 * Returns a read-only (constant) iterator that points one past the last 00361 * pair in the %map. Iteration is done in ascending order according to 00362 * the keys. 00363 */ 00364 const_iterator 00365 end() const _GLIBCXX_NOEXCEPT 00366 { return _M_t.end(); } 00367 00368 /** 00369 * Returns a read/write reverse iterator that points to the last pair in 00370 * the %map. Iteration is done in descending order according to the 00371 * keys. 00372 */ 00373 reverse_iterator 00374 rbegin() _GLIBCXX_NOEXCEPT 00375 { return _M_t.rbegin(); } 00376 00377 /** 00378 * Returns a read-only (constant) reverse iterator that points to the 00379 * last pair in the %map. Iteration is done in descending order 00380 * according to the keys. 00381 */ 00382 const_reverse_iterator 00383 rbegin() const _GLIBCXX_NOEXCEPT 00384 { return _M_t.rbegin(); } 00385 00386 /** 00387 * Returns a read/write reverse iterator that points to one before the 00388 * first pair in the %map. Iteration is done in descending order 00389 * according to the keys. 00390 */ 00391 reverse_iterator 00392 rend() _GLIBCXX_NOEXCEPT 00393 { return _M_t.rend(); } 00394 00395 /** 00396 * Returns a read-only (constant) reverse iterator that points to one 00397 * before the first pair in the %map. Iteration is done in descending 00398 * order according to the keys. 00399 */ 00400 const_reverse_iterator 00401 rend() const _GLIBCXX_NOEXCEPT 00402 { return _M_t.rend(); } 00403 00404 #if __cplusplus >= 201103L 00405 /** 00406 * Returns a read-only (constant) iterator that points to the first pair 00407 * in the %map. Iteration is done in ascending order according to the 00408 * keys. 00409 */ 00410 const_iterator 00411 cbegin() const noexcept 00412 { return _M_t.begin(); } 00413 00414 /** 00415 * Returns a read-only (constant) iterator that points one past the last 00416 * pair in the %map. Iteration is done in ascending order according to 00417 * the keys. 00418 */ 00419 const_iterator 00420 cend() const noexcept 00421 { return _M_t.end(); } 00422 00423 /** 00424 * Returns a read-only (constant) reverse iterator that points to the 00425 * last pair in the %map. Iteration is done in descending order 00426 * according to the keys. 00427 */ 00428 const_reverse_iterator 00429 crbegin() const noexcept 00430 { return _M_t.rbegin(); } 00431 00432 /** 00433 * Returns a read-only (constant) reverse iterator that points to one 00434 * before the first pair in the %map. Iteration is done in descending 00435 * order according to the keys. 00436 */ 00437 const_reverse_iterator 00438 crend() const noexcept 00439 { return _M_t.rend(); } 00440 #endif 00441 00442 // capacity 00443 /** Returns true if the %map is empty. (Thus begin() would equal 00444 * end().) 00445 */ 00446 bool 00447 empty() const _GLIBCXX_NOEXCEPT 00448 { return _M_t.empty(); } 00449 00450 /** Returns the size of the %map. */ 00451 size_type 00452 size() const _GLIBCXX_NOEXCEPT 00453 { return _M_t.size(); } 00454 00455 /** Returns the maximum size of the %map. */ 00456 size_type 00457 max_size() const _GLIBCXX_NOEXCEPT 00458 { return _M_t.max_size(); } 00459 00460 // [23.3.1.2] element access 00461 /** 00462 * @brief Subscript ( @c [] ) access to %map data. 00463 * @param __k The key for which data should be retrieved. 00464 * @return A reference to the data of the (key,data) %pair. 00465 * 00466 * Allows for easy lookup with the subscript ( @c [] ) 00467 * operator. Returns data associated with the key specified in 00468 * subscript. If the key does not exist, a pair with that key 00469 * is created using default values, which is then returned. 00470 * 00471 * Lookup requires logarithmic time. 00472 */ 00473 mapped_type& 00474 operator[](const key_type& __k) 00475 { 00476 // concept requirements 00477 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00478 00479 iterator __i = lower_bound(__k); 00480 // __i->first is greater than or equivalent to __k. 00481 if (__i == end() || key_comp()(__k, (*__i).first)) 00482 #if __cplusplus >= 201103L 00483 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00484 std::tuple<const key_type&>(__k), 00485 std::tuple<>()); 00486 #else 00487 __i = insert(__i, value_type(__k, mapped_type())); 00488 #endif 00489 return (*__i).second; 00490 } 00491 00492 #if __cplusplus >= 201103L 00493 mapped_type& 00494 operator[](key_type&& __k) 00495 { 00496 // concept requirements 00497 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00498 00499 iterator __i = lower_bound(__k); 00500 // __i->first is greater than or equivalent to __k. 00501 if (__i == end() || key_comp()(__k, (*__i).first)) 00502 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00503 std::forward_as_tuple(std::move(__k)), 00504 std::tuple<>()); 00505 return (*__i).second; 00506 } 00507 #endif 00508 00509 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00510 // DR 464. Suggestion for new member functions in standard containers. 00511 /** 00512 * @brief Access to %map data. 00513 * @param __k The key for which data should be retrieved. 00514 * @return A reference to the data whose key is equivalent to @a __k, if 00515 * such a data is present in the %map. 00516 * @throw std::out_of_range If no such data is present. 00517 */ 00518 mapped_type& 00519 at(const key_type& __k) 00520 { 00521 iterator __i = lower_bound(__k); 00522 if (__i == end() || key_comp()(__k, (*__i).first)) 00523 __throw_out_of_range(__N("map::at")); 00524 return (*__i).second; 00525 } 00526 00527 const mapped_type& 00528 at(const key_type& __k) const 00529 { 00530 const_iterator __i = lower_bound(__k); 00531 if (__i == end() || key_comp()(__k, (*__i).first)) 00532 __throw_out_of_range(__N("map::at")); 00533 return (*__i).second; 00534 } 00535 00536 // modifiers 00537 #if __cplusplus >= 201103L 00538 /** 00539 * @brief Attempts to build and insert a std::pair into the %map. 00540 * 00541 * @param __args Arguments used to generate a new pair instance (see 00542 * std::piecewise_contruct for passing arguments to each 00543 * part of the pair constructor). 00544 * 00545 * @return A pair, of which the first element is an iterator that points 00546 * to the possibly inserted pair, and the second is a bool that 00547 * is true if the pair was actually inserted. 00548 * 00549 * This function attempts to build and insert a (key, value) %pair into 00550 * the %map. 00551 * A %map relies on unique keys and thus a %pair is only inserted if its 00552 * first element (the key) is not already present in the %map. 00553 * 00554 * Insertion requires logarithmic time. 00555 */ 00556 template<typename... _Args> 00557 std::pair<iterator, bool> 00558 emplace(_Args&&... __args) 00559 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } 00560 00561 /** 00562 * @brief Attempts to build and insert a std::pair into the %map. 00563 * 00564 * @param __pos An iterator that serves as a hint as to where the pair 00565 * should be inserted. 00566 * @param __args Arguments used to generate a new pair instance (see 00567 * std::piecewise_contruct for passing arguments to each 00568 * part of the pair constructor). 00569 * @return An iterator that points to the element with key of the 00570 * std::pair built from @a __args (may or may not be that 00571 * std::pair). 00572 * 00573 * This function is not concerned about whether the insertion took place, 00574 * and thus does not return a boolean like the single-argument emplace() 00575 * does. 00576 * Note that the first parameter is only a hint and can potentially 00577 * improve the performance of the insertion process. A bad hint would 00578 * cause no gains in efficiency. 00579 * 00580 * See 00581 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00582 * for more on @a hinting. 00583 * 00584 * Insertion requires logarithmic time (if the hint is not taken). 00585 */ 00586 template<typename... _Args> 00587 iterator 00588 emplace_hint(const_iterator __pos, _Args&&... __args) 00589 { 00590 return _M_t._M_emplace_hint_unique(__pos, 00591 std::forward<_Args>(__args)...); 00592 } 00593 #endif 00594 00595 #if __cplusplus > 201402L 00596 #define __cpp_lib_map_try_emplace 201411 00597 /** 00598 * @brief Attempts to build and insert a std::pair into the %map. 00599 * 00600 * @param __k Key to use for finding a possibly existing pair in 00601 * the map. 00602 * @param __args Arguments used to generate the .second for a new pair 00603 * instance. 00604 * 00605 * @return A pair, of which the first element is an iterator that points 00606 * to the possibly inserted pair, and the second is a bool that 00607 * is true if the pair was actually inserted. 00608 * 00609 * This function attempts to build and insert a (key, value) %pair into 00610 * the %map. 00611 * A %map relies on unique keys and thus a %pair is only inserted if its 00612 * first element (the key) is not already present in the %map. 00613 * If a %pair is not inserted, this function has no effect. 00614 * 00615 * Insertion requires logarithmic time. 00616 */ 00617 template <typename... _Args> 00618 pair<iterator, bool> 00619 try_emplace(const key_type& __k, _Args&&... __args) 00620 { 00621 iterator __i = lower_bound(__k); 00622 if (__i == end() || key_comp()(__k, (*__i).first)) 00623 { 00624 __i = emplace_hint(__i, std::piecewise_construct, 00625 std::forward_as_tuple(__k), 00626 std::forward_as_tuple( 00627 std::forward<_Args>(__args)...)); 00628 return {__i, true}; 00629 } 00630 return {__i, false}; 00631 } 00632 00633 // move-capable overload 00634 template <typename... _Args> 00635 pair<iterator, bool> 00636 try_emplace(key_type&& __k, _Args&&... __args) 00637 { 00638 iterator __i = lower_bound(__k); 00639 if (__i == end() || key_comp()(__k, (*__i).first)) 00640 { 00641 __i = emplace_hint(__i, std::piecewise_construct, 00642 std::forward_as_tuple(std::move(__k)), 00643 std::forward_as_tuple( 00644 std::forward<_Args>(__args)...)); 00645 return {__i, true}; 00646 } 00647 return {__i, false}; 00648 } 00649 00650 /** 00651 * @brief Attempts to build and insert a std::pair into the %map. 00652 * 00653 * @param __hint An iterator that serves as a hint as to where the 00654 * pair should be inserted. 00655 * @param __k Key to use for finding a possibly existing pair in 00656 * the map. 00657 * @param __args Arguments used to generate the .second for a new pair 00658 * instance. 00659 * @return An iterator that points to the element with key of the 00660 * std::pair built from @a __args (may or may not be that 00661 * std::pair). 00662 * 00663 * This function is not concerned about whether the insertion took place, 00664 * and thus does not return a boolean like the single-argument 00665 * try_emplace() does. However, if insertion did not take place, 00666 * this function has no effect. 00667 * Note that the first parameter is only a hint and can potentially 00668 * improve the performance of the insertion process. A bad hint would 00669 * cause no gains in efficiency. 00670 * 00671 * See 00672 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00673 * for more on @a hinting. 00674 * 00675 * Insertion requires logarithmic time (if the hint is not taken). 00676 */ 00677 template <typename... _Args> 00678 iterator 00679 try_emplace(const_iterator __hint, const key_type& __k, 00680 _Args&&... __args) 00681 { 00682 iterator __i; 00683 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00684 if (__true_hint.second) 00685 __i = emplace_hint(iterator(__true_hint.second), 00686 std::piecewise_construct, 00687 std::forward_as_tuple(__k), 00688 std::forward_as_tuple( 00689 std::forward<_Args>(__args)...)); 00690 else 00691 __i = iterator(__true_hint.first); 00692 return __i; 00693 } 00694 00695 // move-capable overload 00696 template <typename... _Args> 00697 iterator 00698 try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args) 00699 { 00700 iterator __i; 00701 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00702 if (__true_hint.second) 00703 __i = emplace_hint(iterator(__true_hint.second), 00704 std::piecewise_construct, 00705 std::forward_as_tuple(std::move(__k)), 00706 std::forward_as_tuple( 00707 std::forward<_Args>(__args)...)); 00708 else 00709 __i = iterator(__true_hint.first); 00710 return __i; 00711 } 00712 #endif 00713 00714 /** 00715 * @brief Attempts to insert a std::pair into the %map. 00716 00717 * @param __x Pair to be inserted (see std::make_pair for easy 00718 * creation of pairs). 00719 * 00720 * @return A pair, of which the first element is an iterator that 00721 * points to the possibly inserted pair, and the second is 00722 * a bool that is true if the pair was actually inserted. 00723 * 00724 * This function attempts to insert a (key, value) %pair into the %map. 00725 * A %map relies on unique keys and thus a %pair is only inserted if its 00726 * first element (the key) is not already present in the %map. 00727 * 00728 * Insertion requires logarithmic time. 00729 */ 00730 std::pair<iterator, bool> 00731 insert(const value_type& __x) 00732 { return _M_t._M_insert_unique(__x); } 00733 00734 #if __cplusplus >= 201103L 00735 template<typename _Pair, typename = typename 00736 std::enable_if<std::is_constructible<value_type, 00737 _Pair&&>::value>::type> 00738 std::pair<iterator, bool> 00739 insert(_Pair&& __x) 00740 { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); } 00741 #endif 00742 00743 #if __cplusplus >= 201103L 00744 /** 00745 * @brief Attempts to insert a list of std::pairs into the %map. 00746 * @param __list A std::initializer_list<value_type> of pairs to be 00747 * inserted. 00748 * 00749 * Complexity similar to that of the range constructor. 00750 */ 00751 void 00752 insert(std::initializer_list<value_type> __list) 00753 { insert(__list.begin(), __list.end()); } 00754 #endif 00755 00756 /** 00757 * @brief Attempts to insert a std::pair into the %map. 00758 * @param __position An iterator that serves as a hint as to where the 00759 * pair should be inserted. 00760 * @param __x Pair to be inserted (see std::make_pair for easy creation 00761 * of pairs). 00762 * @return An iterator that points to the element with key of 00763 * @a __x (may or may not be the %pair passed in). 00764 * 00765 00766 * This function is not concerned about whether the insertion 00767 * took place, and thus does not return a boolean like the 00768 * single-argument insert() does. Note that the first 00769 * parameter is only a hint and can potentially improve the 00770 * performance of the insertion process. A bad hint would 00771 * cause no gains in efficiency. 00772 * 00773 * See 00774 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00775 * for more on @a hinting. 00776 * 00777 * Insertion requires logarithmic time (if the hint is not taken). 00778 */ 00779 iterator 00780 #if __cplusplus >= 201103L 00781 insert(const_iterator __position, const value_type& __x) 00782 #else 00783 insert(iterator __position, const value_type& __x) 00784 #endif 00785 { return _M_t._M_insert_unique_(__position, __x); } 00786 00787 #if __cplusplus >= 201103L 00788 template<typename _Pair, typename = typename 00789 std::enable_if<std::is_constructible<value_type, 00790 _Pair&&>::value>::type> 00791 iterator 00792 insert(const_iterator __position, _Pair&& __x) 00793 { return _M_t._M_insert_unique_(__position, 00794 std::forward<_Pair>(__x)); } 00795 #endif 00796 00797 /** 00798 * @brief Template function that attempts to insert a range of elements. 00799 * @param __first Iterator pointing to the start of the range to be 00800 * inserted. 00801 * @param __last Iterator pointing to the end of the range. 00802 * 00803 * Complexity similar to that of the range constructor. 00804 */ 00805 template<typename _InputIterator> 00806 void 00807 insert(_InputIterator __first, _InputIterator __last) 00808 { _M_t._M_insert_unique(__first, __last); } 00809 00810 #if __cplusplus > 201402L 00811 #define __cpp_lib_map_insertion 201411 00812 /** 00813 * @brief Attempts to insert or assign a std::pair into the %map. 00814 * @param __k Key to use for finding a possibly existing pair in 00815 * the map. 00816 * @param __obj Argument used to generate the .second for a pair 00817 * instance. 00818 * 00819 * @return A pair, of which the first element is an iterator that 00820 * points to the possibly inserted pair, and the second is 00821 * a bool that is true if the pair was actually inserted. 00822 * 00823 * This function attempts to insert a (key, value) %pair into the %map. 00824 * A %map relies on unique keys and thus a %pair is only inserted if its 00825 * first element (the key) is not already present in the %map. 00826 * If the %pair was already in the %map, the .second of the %pair 00827 * is assigned from __obj. 00828 * 00829 * Insertion requires logarithmic time. 00830 */ 00831 template <typename _Obj> 00832 pair<iterator, bool> 00833 insert_or_assign(const key_type& __k, _Obj&& __obj) 00834 { 00835 iterator __i = lower_bound(__k); 00836 if (__i == end() || key_comp()(__k, (*__i).first)) 00837 { 00838 __i = emplace_hint(__i, std::piecewise_construct, 00839 std::forward_as_tuple(__k), 00840 std::forward_as_tuple( 00841 std::forward<_Obj>(__obj))); 00842 return {__i, true}; 00843 } 00844 (*__i).second = std::forward<_Obj>(__obj); 00845 return {__i, false}; 00846 } 00847 00848 // move-capable overload 00849 template <typename _Obj> 00850 pair<iterator, bool> 00851 insert_or_assign(key_type&& __k, _Obj&& __obj) 00852 { 00853 iterator __i = lower_bound(__k); 00854 if (__i == end() || key_comp()(__k, (*__i).first)) 00855 { 00856 __i = emplace_hint(__i, std::piecewise_construct, 00857 std::forward_as_tuple(std::move(__k)), 00858 std::forward_as_tuple( 00859 std::forward<_Obj>(__obj))); 00860 return {__i, true}; 00861 } 00862 (*__i).second = std::forward<_Obj>(__obj); 00863 return {__i, false}; 00864 } 00865 00866 /** 00867 * @brief Attempts to insert or assign a std::pair into the %map. 00868 * @param __hint An iterator that serves as a hint as to where the 00869 * pair should be inserted. 00870 * @param __k Key to use for finding a possibly existing pair in 00871 * the map. 00872 * @param __obj Argument used to generate the .second for a pair 00873 * instance. 00874 * 00875 * @return An iterator that points to the element with key of 00876 * @a __x (may or may not be the %pair passed in). 00877 * 00878 * This function attempts to insert a (key, value) %pair into the %map. 00879 * A %map relies on unique keys and thus a %pair is only inserted if its 00880 * first element (the key) is not already present in the %map. 00881 * If the %pair was already in the %map, the .second of the %pair 00882 * is assigned from __obj. 00883 * 00884 * Insertion requires logarithmic time. 00885 */ 00886 template <typename _Obj> 00887 iterator 00888 insert_or_assign(const_iterator __hint, 00889 const key_type& __k, _Obj&& __obj) 00890 { 00891 iterator __i; 00892 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00893 if (__true_hint.second) 00894 { 00895 return emplace_hint(iterator(__true_hint.second), 00896 std::piecewise_construct, 00897 std::forward_as_tuple(__k), 00898 std::forward_as_tuple( 00899 std::forward<_Obj>(__obj))); 00900 } 00901 __i = iterator(__true_hint.first); 00902 (*__i).second = std::forward<_Obj>(__obj); 00903 return __i; 00904 } 00905 00906 // move-capable overload 00907 template <typename _Obj> 00908 iterator 00909 insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj) 00910 { 00911 iterator __i; 00912 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00913 if (__true_hint.second) 00914 { 00915 return emplace_hint(iterator(__true_hint.second), 00916 std::piecewise_construct, 00917 std::forward_as_tuple(std::move(__k)), 00918 std::forward_as_tuple( 00919 std::forward<_Obj>(__obj))); 00920 } 00921 __i = iterator(__true_hint.first); 00922 (*__i).second = std::forward<_Obj>(__obj); 00923 return __i; 00924 } 00925 #endif 00926 00927 #if __cplusplus >= 201103L 00928 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00929 // DR 130. Associative erase should return an iterator. 00930 /** 00931 * @brief Erases an element from a %map. 00932 * @param __position An iterator pointing to the element to be erased. 00933 * @return An iterator pointing to the element immediately following 00934 * @a position prior to the element being erased. If no such 00935 * element exists, end() is returned. 00936 * 00937 * This function erases an element, pointed to by the given 00938 * iterator, from a %map. Note that this function only erases 00939 * the element, and that if the element is itself a pointer, 00940 * the pointed-to memory is not touched in any way. Managing 00941 * the pointer is the user's responsibility. 00942 */ 00943 iterator 00944 erase(const_iterator __position) 00945 { return _M_t.erase(__position); } 00946 00947 // LWG 2059 00948 _GLIBCXX_ABI_TAG_CXX11 00949 iterator 00950 erase(iterator __position) 00951 { return _M_t.erase(__position); } 00952 #else 00953 /** 00954 * @brief Erases an element from a %map. 00955 * @param __position An iterator pointing to the element to be erased. 00956 * 00957 * This function erases an element, pointed to by the given 00958 * iterator, from a %map. Note that this function only erases 00959 * the element, and that if the element is itself a pointer, 00960 * the pointed-to memory is not touched in any way. Managing 00961 * the pointer is the user's responsibility. 00962 */ 00963 void 00964 erase(iterator __position) 00965 { _M_t.erase(__position); } 00966 #endif 00967 00968 /** 00969 * @brief Erases elements according to the provided key. 00970 * @param __x Key of element to be erased. 00971 * @return The number of elements erased. 00972 * 00973 * This function erases all the elements located by the given key from 00974 * a %map. 00975 * Note that this function only erases the element, and that if 00976 * the element is itself a pointer, the pointed-to memory is not touched 00977 * in any way. Managing the pointer is the user's responsibility. 00978 */ 00979 size_type 00980 erase(const key_type& __x) 00981 { return _M_t.erase(__x); } 00982 00983 #if __cplusplus >= 201103L 00984 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00985 // DR 130. Associative erase should return an iterator. 00986 /** 00987 * @brief Erases a [first,last) range of elements from a %map. 00988 * @param __first Iterator pointing to the start of the range to be 00989 * erased. 00990 * @param __last Iterator pointing to the end of the range to 00991 * be erased. 00992 * @return The iterator @a __last. 00993 * 00994 * This function erases a sequence of elements from a %map. 00995 * Note that this function only erases the element, and that if 00996 * the element is itself a pointer, the pointed-to memory is not touched 00997 * in any way. Managing the pointer is the user's responsibility. 00998 */ 00999 iterator 01000 erase(const_iterator __first, const_iterator __last) 01001 { return _M_t.erase(__first, __last); } 01002 #else 01003 /** 01004 * @brief Erases a [__first,__last) range of elements from a %map. 01005 * @param __first Iterator pointing to the start of the range to be 01006 * erased. 01007 * @param __last Iterator pointing to the end of the range to 01008 * be erased. 01009 * 01010 * This function erases a sequence of elements from a %map. 01011 * Note that this function only erases the element, and that if 01012 * the element is itself a pointer, the pointed-to memory is not touched 01013 * in any way. Managing the pointer is the user's responsibility. 01014 */ 01015 void 01016 erase(iterator __first, iterator __last) 01017 { _M_t.erase(__first, __last); } 01018 #endif 01019 01020 /** 01021 * @brief Swaps data with another %map. 01022 * @param __x A %map of the same element and allocator types. 01023 * 01024 * This exchanges the elements between two maps in constant 01025 * time. (It is only swapping a pointer, an integer, and an 01026 * instance of the @c Compare type (which itself is often 01027 * stateless and empty), so it should be quite fast.) Note 01028 * that the global std::swap() function is specialized such 01029 * that std::swap(m1,m2) will feed to this function. 01030 */ 01031 void 01032 swap(map& __x) 01033 _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value) 01034 { _M_t.swap(__x._M_t); } 01035 01036 /** 01037 * Erases all elements in a %map. Note that this function only 01038 * erases the elements, and that if the elements themselves are 01039 * pointers, the pointed-to memory is not touched in any way. 01040 * Managing the pointer is the user's responsibility. 01041 */ 01042 void 01043 clear() _GLIBCXX_NOEXCEPT 01044 { _M_t.clear(); } 01045 01046 // observers 01047 /** 01048 * Returns the key comparison object out of which the %map was 01049 * constructed. 01050 */ 01051 key_compare 01052 key_comp() const 01053 { return _M_t.key_comp(); } 01054 01055 /** 01056 * Returns a value comparison object, built from the key comparison 01057 * object out of which the %map was constructed. 01058 */ 01059 value_compare 01060 value_comp() const 01061 { return value_compare(_M_t.key_comp()); } 01062 01063 // [23.3.1.3] map operations 01064 01065 //@{ 01066 /** 01067 * @brief Tries to locate an element in a %map. 01068 * @param __x Key of (key, value) %pair to be located. 01069 * @return Iterator pointing to sought-after element, or end() if not 01070 * found. 01071 * 01072 * This function takes a key and tries to locate the element with which 01073 * the key matches. If successful the function returns an iterator 01074 * pointing to the sought after %pair. If unsuccessful it returns the 01075 * past-the-end ( @c end() ) iterator. 01076 */ 01077 01078 iterator 01079 find(const key_type& __x) 01080 { return _M_t.find(__x); } 01081 01082 #if __cplusplus > 201103L 01083 template<typename _Kt> 01084 auto 01085 find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x)) 01086 { return _M_t._M_find_tr(__x); } 01087 #endif 01088 //@} 01089 01090 //@{ 01091 /** 01092 * @brief Tries to locate an element in a %map. 01093 * @param __x Key of (key, value) %pair to be located. 01094 * @return Read-only (constant) iterator pointing to sought-after 01095 * element, or end() if not found. 01096 * 01097 * This function takes a key and tries to locate the element with which 01098 * the key matches. If successful the function returns a constant 01099 * iterator pointing to the sought after %pair. If unsuccessful it 01100 * returns the past-the-end ( @c end() ) iterator. 01101 */ 01102 01103 const_iterator 01104 find(const key_type& __x) const 01105 { return _M_t.find(__x); } 01106 01107 #if __cplusplus > 201103L 01108 template<typename _Kt> 01109 auto 01110 find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x)) 01111 { return _M_t._M_find_tr(__x); } 01112 #endif 01113 //@} 01114 01115 //@{ 01116 /** 01117 * @brief Finds the number of elements with given key. 01118 * @param __x Key of (key, value) pairs to be located. 01119 * @return Number of elements with specified key. 01120 * 01121 * This function only makes sense for multimaps; for map the result will 01122 * either be 0 (not present) or 1 (present). 01123 */ 01124 size_type 01125 count(const key_type& __x) const 01126 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 01127 01128 #if __cplusplus > 201103L 01129 template<typename _Kt> 01130 auto 01131 count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x)) 01132 { return _M_t._M_find_tr(__x) == _M_t.end() ? 0 : 1; } 01133 #endif 01134 //@} 01135 01136 //@{ 01137 /** 01138 * @brief Finds the beginning of a subsequence matching given key. 01139 * @param __x Key of (key, value) pair to be located. 01140 * @return Iterator pointing to first element equal to or greater 01141 * than key, or end(). 01142 * 01143 * This function returns the first element of a subsequence of elements 01144 * that matches the given key. If unsuccessful it returns an iterator 01145 * pointing to the first element that has a greater value than given key 01146 * or end() if no such element exists. 01147 */ 01148 iterator 01149 lower_bound(const key_type& __x) 01150 { return _M_t.lower_bound(__x); } 01151 01152 #if __cplusplus > 201103L 01153 template<typename _Kt> 01154 auto 01155 lower_bound(const _Kt& __x) 01156 -> decltype(_M_t._M_lower_bound_tr(__x)) 01157 { return _M_t._M_lower_bound_tr(__x); } 01158 #endif 01159 //@} 01160 01161 //@{ 01162 /** 01163 * @brief Finds the beginning of a subsequence matching given key. 01164 * @param __x Key of (key, value) pair to be located. 01165 * @return Read-only (constant) iterator pointing to first element 01166 * equal to or greater than key, or end(). 01167 * 01168 * This function returns the first element of a subsequence of elements 01169 * that matches the given key. If unsuccessful it returns an iterator 01170 * pointing to the first element that has a greater value than given key 01171 * or end() if no such element exists. 01172 */ 01173 const_iterator 01174 lower_bound(const key_type& __x) const 01175 { return _M_t.lower_bound(__x); } 01176 01177 #if __cplusplus > 201103L 01178 template<typename _Kt> 01179 auto 01180 lower_bound(const _Kt& __x) const 01181 -> decltype(_M_t._M_lower_bound_tr(__x)) 01182 { return _M_t._M_lower_bound_tr(__x); } 01183 #endif 01184 //@} 01185 01186 //@{ 01187 /** 01188 * @brief Finds the end of a subsequence matching given key. 01189 * @param __x Key of (key, value) pair to be located. 01190 * @return Iterator pointing to the first element 01191 * greater than key, or end(). 01192 */ 01193 iterator 01194 upper_bound(const key_type& __x) 01195 { return _M_t.upper_bound(__x); } 01196 01197 #if __cplusplus > 201103L 01198 template<typename _Kt> 01199 auto 01200 upper_bound(const _Kt& __x) 01201 -> decltype(_M_t._M_upper_bound_tr(__x)) 01202 { return _M_t._M_upper_bound_tr(__x); } 01203 #endif 01204 //@} 01205 01206 //@{ 01207 /** 01208 * @brief Finds the end of a subsequence matching given key. 01209 * @param __x Key of (key, value) pair to be located. 01210 * @return Read-only (constant) iterator pointing to first iterator 01211 * greater than key, or end(). 01212 */ 01213 const_iterator 01214 upper_bound(const key_type& __x) const 01215 { return _M_t.upper_bound(__x); } 01216 01217 #if __cplusplus > 201103L 01218 template<typename _Kt> 01219 auto 01220 upper_bound(const _Kt& __x) const 01221 -> decltype(_M_t._M_upper_bound_tr(__x)) 01222 { return _M_t._M_upper_bound_tr(__x); } 01223 #endif 01224 //@} 01225 01226 //@{ 01227 /** 01228 * @brief Finds a subsequence matching given key. 01229 * @param __x Key of (key, value) pairs to be located. 01230 * @return Pair of iterators that possibly points to the subsequence 01231 * matching given key. 01232 * 01233 * This function is equivalent to 01234 * @code 01235 * std::make_pair(c.lower_bound(val), 01236 * c.upper_bound(val)) 01237 * @endcode 01238 * (but is faster than making the calls separately). 01239 * 01240 * This function probably only makes sense for multimaps. 01241 */ 01242 std::pair<iterator, iterator> 01243 equal_range(const key_type& __x) 01244 { return _M_t.equal_range(__x); } 01245 01246 #if __cplusplus > 201103L 01247 template<typename _Kt> 01248 auto 01249 equal_range(const _Kt& __x) 01250 -> decltype(_M_t._M_equal_range_tr(__x)) 01251 { return _M_t._M_equal_range_tr(__x); } 01252 #endif 01253 //@} 01254 01255 //@{ 01256 /** 01257 * @brief Finds a subsequence matching given key. 01258 * @param __x Key of (key, value) pairs to be located. 01259 * @return Pair of read-only (constant) iterators that possibly points 01260 * to the subsequence matching given key. 01261 * 01262 * This function is equivalent to 01263 * @code 01264 * std::make_pair(c.lower_bound(val), 01265 * c.upper_bound(val)) 01266 * @endcode 01267 * (but is faster than making the calls separately). 01268 * 01269 * This function probably only makes sense for multimaps. 01270 */ 01271 std::pair<const_iterator, const_iterator> 01272 equal_range(const key_type& __x) const 01273 { return _M_t.equal_range(__x); } 01274 01275 #if __cplusplus > 201103L 01276 template<typename _Kt> 01277 auto 01278 equal_range(const _Kt& __x) const 01279 -> decltype(_M_t._M_equal_range_tr(__x)) 01280 { return _M_t._M_equal_range_tr(__x); } 01281 #endif 01282 //@} 01283 01284 template<typename _K1, typename _T1, typename _C1, typename _A1> 01285 friend bool 01286 operator==(const map<_K1, _T1, _C1, _A1>&, 01287 const map<_K1, _T1, _C1, _A1>&); 01288 01289 template<typename _K1, typename _T1, typename _C1, typename _A1> 01290 friend bool 01291 operator<(const map<_K1, _T1, _C1, _A1>&, 01292 const map<_K1, _T1, _C1, _A1>&); 01293 }; 01294 01295 /** 01296 * @brief Map equality comparison. 01297 * @param __x A %map. 01298 * @param __y A %map of the same type as @a x. 01299 * @return True iff the size and elements of the maps are equal. 01300 * 01301 * This is an equivalence relation. It is linear in the size of the 01302 * maps. Maps are considered equivalent if their sizes are equal, 01303 * and if corresponding elements compare equal. 01304 */ 01305 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01306 inline bool 01307 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01308 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01309 { return __x._M_t == __y._M_t; } 01310 01311 /** 01312 * @brief Map ordering relation. 01313 * @param __x A %map. 01314 * @param __y A %map of the same type as @a x. 01315 * @return True iff @a x is lexicographically less than @a y. 01316 * 01317 * This is a total ordering relation. It is linear in the size of the 01318 * maps. The elements must be comparable with @c <. 01319 * 01320 * See std::lexicographical_compare() for how the determination is made. 01321 */ 01322 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01323 inline bool 01324 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01325 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01326 { return __x._M_t < __y._M_t; } 01327 01328 /// Based on operator== 01329 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01330 inline bool 01331 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01332 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01333 { return !(__x == __y); } 01334 01335 /// Based on operator< 01336 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01337 inline bool 01338 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01339 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01340 { return __y < __x; } 01341 01342 /// Based on operator< 01343 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01344 inline bool 01345 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01346 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01347 { return !(__y < __x); } 01348 01349 /// Based on operator< 01350 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01351 inline bool 01352 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01353 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01354 { return !(__x < __y); } 01355 01356 /// See std::map::swap(). 01357 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01358 inline void 01359 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 01360 map<_Key, _Tp, _Compare, _Alloc>& __y) 01361 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) 01362 { __x.swap(__y); } 01363 01364 _GLIBCXX_END_NAMESPACE_CONTAINER 01365 } // namespace std 01366 01367 #endif /* _STL_MAP_H */