libstdc++
|
00001 // Deque implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2016 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_deque.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{deque} 00054 */ 00055 00056 #ifndef _STL_DEQUE_H 00057 #define _STL_DEQUE_H 1 00058 00059 #include <bits/concept_check.h> 00060 #include <bits/stl_iterator_base_types.h> 00061 #include <bits/stl_iterator_base_funcs.h> 00062 #if __cplusplus >= 201103L 00063 #include <initializer_list> 00064 #endif 00065 00066 namespace std _GLIBCXX_VISIBILITY(default) 00067 { 00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00069 00070 /** 00071 * @brief This function controls the size of memory nodes. 00072 * @param __size The size of an element. 00073 * @return The number (not byte size) of elements per node. 00074 * 00075 * This function started off as a compiler kludge from SGI, but 00076 * seems to be a useful wrapper around a repeated constant 00077 * expression. The @b 512 is tunable (and no other code needs to 00078 * change), but no investigation has been done since inheriting the 00079 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what 00080 * you are doing, however: changing it breaks the binary 00081 * compatibility!! 00082 */ 00083 00084 #ifndef _GLIBCXX_DEQUE_BUF_SIZE 00085 #define _GLIBCXX_DEQUE_BUF_SIZE 512 00086 #endif 00087 00088 _GLIBCXX_CONSTEXPR inline size_t 00089 __deque_buf_size(size_t __size) 00090 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE 00091 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); } 00092 00093 00094 /** 00095 * @brief A deque::iterator. 00096 * 00097 * Quite a bit of intelligence here. Much of the functionality of 00098 * deque is actually passed off to this class. A deque holds two 00099 * of these internally, marking its valid range. Access to 00100 * elements is done as offsets of either of those two, relying on 00101 * operator overloading in this class. 00102 * 00103 * All the functions are op overloads except for _M_set_node. 00104 */ 00105 template<typename _Tp, typename _Ref, typename _Ptr> 00106 struct _Deque_iterator 00107 { 00108 #if __cplusplus < 201103L 00109 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00110 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00111 typedef _Tp* _Elt_pointer; 00112 typedef _Tp** _Map_pointer; 00113 #else 00114 private: 00115 template<typename _Up> 00116 using __ptr_to = typename pointer_traits<_Ptr>::template rebind<_Up>; 00117 template<typename _CvTp> 00118 using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_to<_CvTp>>; 00119 public: 00120 typedef __iter<_Tp> iterator; 00121 typedef __iter<const _Tp> const_iterator; 00122 typedef __ptr_to<_Tp> _Elt_pointer; 00123 typedef __ptr_to<_Elt_pointer> _Map_pointer; 00124 #endif 00125 00126 static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT 00127 { return __deque_buf_size(sizeof(_Tp)); } 00128 00129 typedef std::random_access_iterator_tag iterator_category; 00130 typedef _Tp value_type; 00131 typedef _Ptr pointer; 00132 typedef _Ref reference; 00133 typedef size_t size_type; 00134 typedef ptrdiff_t difference_type; 00135 typedef _Deque_iterator _Self; 00136 00137 _Elt_pointer _M_cur; 00138 _Elt_pointer _M_first; 00139 _Elt_pointer _M_last; 00140 _Map_pointer _M_node; 00141 00142 _Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT 00143 : _M_cur(__x), _M_first(*__y), 00144 _M_last(*__y + _S_buffer_size()), _M_node(__y) { } 00145 00146 _Deque_iterator() _GLIBCXX_NOEXCEPT 00147 : _M_cur(), _M_first(), _M_last(), _M_node() { } 00148 00149 _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT 00150 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00151 _M_last(__x._M_last), _M_node(__x._M_node) { } 00152 00153 iterator 00154 _M_const_cast() const _GLIBCXX_NOEXCEPT 00155 { return iterator(_M_cur, _M_node); } 00156 00157 reference 00158 operator*() const _GLIBCXX_NOEXCEPT 00159 { return *_M_cur; } 00160 00161 pointer 00162 operator->() const _GLIBCXX_NOEXCEPT 00163 { return _M_cur; } 00164 00165 _Self& 00166 operator++() _GLIBCXX_NOEXCEPT 00167 { 00168 ++_M_cur; 00169 if (_M_cur == _M_last) 00170 { 00171 _M_set_node(_M_node + 1); 00172 _M_cur = _M_first; 00173 } 00174 return *this; 00175 } 00176 00177 _Self 00178 operator++(int) _GLIBCXX_NOEXCEPT 00179 { 00180 _Self __tmp = *this; 00181 ++*this; 00182 return __tmp; 00183 } 00184 00185 _Self& 00186 operator--() _GLIBCXX_NOEXCEPT 00187 { 00188 if (_M_cur == _M_first) 00189 { 00190 _M_set_node(_M_node - 1); 00191 _M_cur = _M_last; 00192 } 00193 --_M_cur; 00194 return *this; 00195 } 00196 00197 _Self 00198 operator--(int) _GLIBCXX_NOEXCEPT 00199 { 00200 _Self __tmp = *this; 00201 --*this; 00202 return __tmp; 00203 } 00204 00205 _Self& 00206 operator+=(difference_type __n) _GLIBCXX_NOEXCEPT 00207 { 00208 const difference_type __offset = __n + (_M_cur - _M_first); 00209 if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) 00210 _M_cur += __n; 00211 else 00212 { 00213 const difference_type __node_offset = 00214 __offset > 0 ? __offset / difference_type(_S_buffer_size()) 00215 : -difference_type((-__offset - 1) 00216 / _S_buffer_size()) - 1; 00217 _M_set_node(_M_node + __node_offset); 00218 _M_cur = _M_first + (__offset - __node_offset 00219 * difference_type(_S_buffer_size())); 00220 } 00221 return *this; 00222 } 00223 00224 _Self 00225 operator+(difference_type __n) const _GLIBCXX_NOEXCEPT 00226 { 00227 _Self __tmp = *this; 00228 return __tmp += __n; 00229 } 00230 00231 _Self& 00232 operator-=(difference_type __n) _GLIBCXX_NOEXCEPT 00233 { return *this += -__n; } 00234 00235 _Self 00236 operator-(difference_type __n) const _GLIBCXX_NOEXCEPT 00237 { 00238 _Self __tmp = *this; 00239 return __tmp -= __n; 00240 } 00241 00242 reference 00243 operator[](difference_type __n) const _GLIBCXX_NOEXCEPT 00244 { return *(*this + __n); } 00245 00246 /** 00247 * Prepares to traverse new_node. Sets everything except 00248 * _M_cur, which should therefore be set by the caller 00249 * immediately afterwards, based on _M_first and _M_last. 00250 */ 00251 void 00252 _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT 00253 { 00254 _M_node = __new_node; 00255 _M_first = *__new_node; 00256 _M_last = _M_first + difference_type(_S_buffer_size()); 00257 } 00258 }; 00259 00260 // Note: we also provide overloads whose operands are of the same type in 00261 // order to avoid ambiguous overload resolution when std::rel_ops operators 00262 // are in scope (for additional details, see libstdc++/3628) 00263 template<typename _Tp, typename _Ref, typename _Ptr> 00264 inline bool 00265 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00266 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00267 { return __x._M_cur == __y._M_cur; } 00268 00269 template<typename _Tp, typename _RefL, typename _PtrL, 00270 typename _RefR, typename _PtrR> 00271 inline bool 00272 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00273 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00274 { return __x._M_cur == __y._M_cur; } 00275 00276 template<typename _Tp, typename _Ref, typename _Ptr> 00277 inline bool 00278 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00279 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00280 { return !(__x == __y); } 00281 00282 template<typename _Tp, typename _RefL, typename _PtrL, 00283 typename _RefR, typename _PtrR> 00284 inline bool 00285 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00286 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00287 { return !(__x == __y); } 00288 00289 template<typename _Tp, typename _Ref, typename _Ptr> 00290 inline bool 00291 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00292 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00293 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00294 : (__x._M_node < __y._M_node); } 00295 00296 template<typename _Tp, typename _RefL, typename _PtrL, 00297 typename _RefR, typename _PtrR> 00298 inline bool 00299 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00300 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00301 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00302 : (__x._M_node < __y._M_node); } 00303 00304 template<typename _Tp, typename _Ref, typename _Ptr> 00305 inline bool 00306 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00307 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00308 { return __y < __x; } 00309 00310 template<typename _Tp, typename _RefL, typename _PtrL, 00311 typename _RefR, typename _PtrR> 00312 inline bool 00313 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00314 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00315 { return __y < __x; } 00316 00317 template<typename _Tp, typename _Ref, typename _Ptr> 00318 inline bool 00319 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00320 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00321 { return !(__y < __x); } 00322 00323 template<typename _Tp, typename _RefL, typename _PtrL, 00324 typename _RefR, typename _PtrR> 00325 inline bool 00326 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00327 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00328 { return !(__y < __x); } 00329 00330 template<typename _Tp, typename _Ref, typename _Ptr> 00331 inline bool 00332 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00333 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00334 { return !(__x < __y); } 00335 00336 template<typename _Tp, typename _RefL, typename _PtrL, 00337 typename _RefR, typename _PtrR> 00338 inline bool 00339 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00340 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00341 { return !(__x < __y); } 00342 00343 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00344 // According to the resolution of DR179 not only the various comparison 00345 // operators but also operator- must accept mixed iterator/const_iterator 00346 // parameters. 00347 template<typename _Tp, typename _Ref, typename _Ptr> 00348 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00349 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00350 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT 00351 { 00352 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00353 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size()) 00354 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00355 + (__y._M_last - __y._M_cur); 00356 } 00357 00358 template<typename _Tp, typename _RefL, typename _PtrL, 00359 typename _RefR, typename _PtrR> 00360 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00361 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00362 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT 00363 { 00364 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00365 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) 00366 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00367 + (__y._M_last - __y._M_cur); 00368 } 00369 00370 template<typename _Tp, typename _Ref, typename _Ptr> 00371 inline _Deque_iterator<_Tp, _Ref, _Ptr> 00372 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) 00373 _GLIBCXX_NOEXCEPT 00374 { return __x + __n; } 00375 00376 template<typename _Tp> 00377 void 00378 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&, 00379 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&); 00380 00381 template<typename _Tp> 00382 _Deque_iterator<_Tp, _Tp&, _Tp*> 00383 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00384 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00385 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00386 00387 template<typename _Tp> 00388 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00389 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00390 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00391 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00392 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00393 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00394 __result); } 00395 00396 template<typename _Tp> 00397 _Deque_iterator<_Tp, _Tp&, _Tp*> 00398 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00399 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00400 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00401 00402 template<typename _Tp> 00403 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00404 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00405 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00406 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00407 { return std::copy_backward(_Deque_iterator<_Tp, 00408 const _Tp&, const _Tp*>(__first), 00409 _Deque_iterator<_Tp, 00410 const _Tp&, const _Tp*>(__last), 00411 __result); } 00412 00413 #if __cplusplus >= 201103L 00414 template<typename _Tp> 00415 _Deque_iterator<_Tp, _Tp&, _Tp*> 00416 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00417 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00418 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00419 00420 template<typename _Tp> 00421 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00422 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00423 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00424 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00425 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00426 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00427 __result); } 00428 00429 template<typename _Tp> 00430 _Deque_iterator<_Tp, _Tp&, _Tp*> 00431 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00432 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00433 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00434 00435 template<typename _Tp> 00436 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00437 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00438 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00439 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00440 { return std::move_backward(_Deque_iterator<_Tp, 00441 const _Tp&, const _Tp*>(__first), 00442 _Deque_iterator<_Tp, 00443 const _Tp&, const _Tp*>(__last), 00444 __result); } 00445 #endif 00446 00447 /** 00448 * Deque base class. This class provides the unified face for %deque's 00449 * allocation. This class's constructor and destructor allocate and 00450 * deallocate (but do not initialize) storage. This makes %exception 00451 * safety easier. 00452 * 00453 * Nothing in this class ever constructs or destroys an actual Tp element. 00454 * (Deque handles that itself.) Only/All memory management is performed 00455 * here. 00456 */ 00457 template<typename _Tp, typename _Alloc> 00458 class _Deque_base 00459 { 00460 protected: 00461 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00462 rebind<_Tp>::other _Tp_alloc_type; 00463 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits; 00464 00465 #if __cplusplus < 201103L 00466 typedef _Tp* _Ptr; 00467 typedef const _Tp* _Ptr_const; 00468 #else 00469 typedef typename _Alloc_traits::pointer _Ptr; 00470 typedef typename _Alloc_traits::const_pointer _Ptr_const; 00471 #endif 00472 00473 typedef typename _Alloc_traits::template rebind<_Ptr>::other 00474 _Map_alloc_type; 00475 typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits; 00476 00477 public: 00478 typedef _Alloc allocator_type; 00479 typedef typename _Alloc_traits::size_type size_type; 00480 00481 allocator_type 00482 get_allocator() const _GLIBCXX_NOEXCEPT 00483 { return allocator_type(_M_get_Tp_allocator()); } 00484 00485 typedef _Deque_iterator<_Tp, _Tp&, _Ptr> iterator; 00486 typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const> const_iterator; 00487 00488 _Deque_base() 00489 : _M_impl() 00490 { _M_initialize_map(0); } 00491 00492 _Deque_base(size_t __num_elements) 00493 : _M_impl() 00494 { _M_initialize_map(__num_elements); } 00495 00496 _Deque_base(const allocator_type& __a, size_t __num_elements) 00497 : _M_impl(__a) 00498 { _M_initialize_map(__num_elements); } 00499 00500 _Deque_base(const allocator_type& __a) 00501 : _M_impl(__a) 00502 { /* Caller must initialize map. */ } 00503 00504 #if __cplusplus >= 201103L 00505 _Deque_base(_Deque_base&& __x, false_type) 00506 : _M_impl(__x._M_move_impl()) 00507 { } 00508 00509 _Deque_base(_Deque_base&& __x, true_type) 00510 : _M_impl(std::move(__x._M_get_Tp_allocator())) 00511 { 00512 _M_initialize_map(0); 00513 if (__x._M_impl._M_map) 00514 this->_M_impl._M_swap_data(__x._M_impl); 00515 } 00516 00517 _Deque_base(_Deque_base&& __x) 00518 : _Deque_base(std::move(__x), typename _Alloc_traits::is_always_equal{}) 00519 { } 00520 00521 _Deque_base(_Deque_base&& __x, const allocator_type& __a, size_type __n) 00522 : _M_impl(__a) 00523 { 00524 if (__x.get_allocator() == __a) 00525 { 00526 if (__x._M_impl._M_map) 00527 { 00528 _M_initialize_map(0); 00529 this->_M_impl._M_swap_data(__x._M_impl); 00530 } 00531 } 00532 else 00533 { 00534 _M_initialize_map(__n); 00535 } 00536 } 00537 #endif 00538 00539 ~_Deque_base() _GLIBCXX_NOEXCEPT; 00540 00541 protected: 00542 typedef typename iterator::_Map_pointer _Map_pointer; 00543 00544 //This struct encapsulates the implementation of the std::deque 00545 //standard container and at the same time makes use of the EBO 00546 //for empty allocators. 00547 struct _Deque_impl 00548 : public _Tp_alloc_type 00549 { 00550 _Map_pointer _M_map; 00551 size_t _M_map_size; 00552 iterator _M_start; 00553 iterator _M_finish; 00554 00555 _Deque_impl() 00556 : _Tp_alloc_type(), _M_map(), _M_map_size(0), 00557 _M_start(), _M_finish() 00558 { } 00559 00560 _Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT 00561 : _Tp_alloc_type(__a), _M_map(), _M_map_size(0), 00562 _M_start(), _M_finish() 00563 { } 00564 00565 #if __cplusplus >= 201103L 00566 _Deque_impl(_Deque_impl&&) = default; 00567 00568 _Deque_impl(_Tp_alloc_type&& __a) noexcept 00569 : _Tp_alloc_type(std::move(__a)), _M_map(), _M_map_size(0), 00570 _M_start(), _M_finish() 00571 { } 00572 #endif 00573 00574 void _M_swap_data(_Deque_impl& __x) _GLIBCXX_NOEXCEPT 00575 { 00576 using std::swap; 00577 swap(this->_M_start, __x._M_start); 00578 swap(this->_M_finish, __x._M_finish); 00579 swap(this->_M_map, __x._M_map); 00580 swap(this->_M_map_size, __x._M_map_size); 00581 } 00582 }; 00583 00584 _Tp_alloc_type& 00585 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT 00586 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } 00587 00588 const _Tp_alloc_type& 00589 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT 00590 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); } 00591 00592 _Map_alloc_type 00593 _M_get_map_allocator() const _GLIBCXX_NOEXCEPT 00594 { return _Map_alloc_type(_M_get_Tp_allocator()); } 00595 00596 _Ptr 00597 _M_allocate_node() 00598 { 00599 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits; 00600 return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp))); 00601 } 00602 00603 void 00604 _M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT 00605 { 00606 typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits; 00607 _Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp))); 00608 } 00609 00610 _Map_pointer 00611 _M_allocate_map(size_t __n) 00612 { 00613 _Map_alloc_type __map_alloc = _M_get_map_allocator(); 00614 return _Map_alloc_traits::allocate(__map_alloc, __n); 00615 } 00616 00617 void 00618 _M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT 00619 { 00620 _Map_alloc_type __map_alloc = _M_get_map_allocator(); 00621 _Map_alloc_traits::deallocate(__map_alloc, __p, __n); 00622 } 00623 00624 protected: 00625 void _M_initialize_map(size_t); 00626 void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish); 00627 void _M_destroy_nodes(_Map_pointer __nstart, 00628 _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT; 00629 enum { _S_initial_map_size = 8 }; 00630 00631 _Deque_impl _M_impl; 00632 00633 #if __cplusplus >= 201103L 00634 private: 00635 _Deque_impl 00636 _M_move_impl() 00637 { 00638 if (!_M_impl._M_map) 00639 return std::move(_M_impl); 00640 00641 // Create a copy of the current allocator. 00642 _Tp_alloc_type __alloc{_M_get_Tp_allocator()}; 00643 // Put that copy in a moved-from state. 00644 _Tp_alloc_type __sink __attribute((__unused__)) {std::move(__alloc)}; 00645 // Create an empty map that allocates using the moved-from allocator. 00646 _Deque_base __empty{__alloc}; 00647 __empty._M_initialize_map(0); 00648 // Now safe to modify current allocator and perform non-throwing swaps. 00649 _Deque_impl __ret{std::move(_M_get_Tp_allocator())}; 00650 _M_impl._M_swap_data(__ret); 00651 _M_impl._M_swap_data(__empty._M_impl); 00652 return __ret; 00653 } 00654 #endif 00655 }; 00656 00657 template<typename _Tp, typename _Alloc> 00658 _Deque_base<_Tp, _Alloc>:: 00659 ~_Deque_base() _GLIBCXX_NOEXCEPT 00660 { 00661 if (this->_M_impl._M_map) 00662 { 00663 _M_destroy_nodes(this->_M_impl._M_start._M_node, 00664 this->_M_impl._M_finish._M_node + 1); 00665 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00666 } 00667 } 00668 00669 /** 00670 * @brief Layout storage. 00671 * @param __num_elements The count of T's for which to allocate space 00672 * at first. 00673 * @return Nothing. 00674 * 00675 * The initial underlying memory layout is a bit complicated... 00676 */ 00677 template<typename _Tp, typename _Alloc> 00678 void 00679 _Deque_base<_Tp, _Alloc>:: 00680 _M_initialize_map(size_t __num_elements) 00681 { 00682 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp)) 00683 + 1); 00684 00685 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, 00686 size_t(__num_nodes + 2)); 00687 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); 00688 00689 // For "small" maps (needing less than _M_map_size nodes), allocation 00690 // starts in the middle elements and grows outwards. So nstart may be 00691 // the beginning of _M_map, but for small maps it may be as far in as 00692 // _M_map+3. 00693 00694 _Map_pointer __nstart = (this->_M_impl._M_map 00695 + (this->_M_impl._M_map_size - __num_nodes) / 2); 00696 _Map_pointer __nfinish = __nstart + __num_nodes; 00697 00698 __try 00699 { _M_create_nodes(__nstart, __nfinish); } 00700 __catch(...) 00701 { 00702 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00703 this->_M_impl._M_map = _Map_pointer(); 00704 this->_M_impl._M_map_size = 0; 00705 __throw_exception_again; 00706 } 00707 00708 this->_M_impl._M_start._M_set_node(__nstart); 00709 this->_M_impl._M_finish._M_set_node(__nfinish - 1); 00710 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; 00711 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first 00712 + __num_elements 00713 % __deque_buf_size(sizeof(_Tp))); 00714 } 00715 00716 template<typename _Tp, typename _Alloc> 00717 void 00718 _Deque_base<_Tp, _Alloc>:: 00719 _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish) 00720 { 00721 _Map_pointer __cur; 00722 __try 00723 { 00724 for (__cur = __nstart; __cur < __nfinish; ++__cur) 00725 *__cur = this->_M_allocate_node(); 00726 } 00727 __catch(...) 00728 { 00729 _M_destroy_nodes(__nstart, __cur); 00730 __throw_exception_again; 00731 } 00732 } 00733 00734 template<typename _Tp, typename _Alloc> 00735 void 00736 _Deque_base<_Tp, _Alloc>:: 00737 _M_destroy_nodes(_Map_pointer __nstart, 00738 _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT 00739 { 00740 for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n) 00741 _M_deallocate_node(*__n); 00742 } 00743 00744 /** 00745 * @brief A standard container using fixed-size memory allocation and 00746 * constant-time manipulation of elements at either end. 00747 * 00748 * @ingroup sequences 00749 * 00750 * @tparam _Tp Type of element. 00751 * @tparam _Alloc Allocator type, defaults to allocator<_Tp>. 00752 * 00753 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00754 * <a href="tables.html#66">reversible container</a>, and a 00755 * <a href="tables.html#67">sequence</a>, including the 00756 * <a href="tables.html#68">optional sequence requirements</a>. 00757 * 00758 * In previous HP/SGI versions of deque, there was an extra template 00759 * parameter so users could control the node size. This extension turned 00760 * out to violate the C++ standard (it can be detected using template 00761 * template parameters), and it was removed. 00762 * 00763 * Here's how a deque<Tp> manages memory. Each deque has 4 members: 00764 * 00765 * - Tp** _M_map 00766 * - size_t _M_map_size 00767 * - iterator _M_start, _M_finish 00768 * 00769 * map_size is at least 8. %map is an array of map_size 00770 * pointers-to-@a nodes. (The name %map has nothing to do with the 00771 * std::map class, and @b nodes should not be confused with 00772 * std::list's usage of @a node.) 00773 * 00774 * A @a node has no specific type name as such, but it is referred 00775 * to as @a node in this file. It is a simple array-of-Tp. If Tp 00776 * is very large, there will be one Tp element per node (i.e., an 00777 * @a array of one). For non-huge Tp's, node size is inversely 00778 * related to Tp size: the larger the Tp, the fewer Tp's will fit 00779 * in a node. The goal here is to keep the total size of a node 00780 * relatively small and constant over different Tp's, to improve 00781 * allocator efficiency. 00782 * 00783 * Not every pointer in the %map array will point to a node. If 00784 * the initial number of elements in the deque is small, the 00785 * /middle/ %map pointers will be valid, and the ones at the edges 00786 * will be unused. This same situation will arise as the %map 00787 * grows: available %map pointers, if any, will be on the ends. As 00788 * new nodes are created, only a subset of the %map's pointers need 00789 * to be copied @a outward. 00790 * 00791 * Class invariants: 00792 * - For any nonsingular iterator i: 00793 * - i.node points to a member of the %map array. (Yes, you read that 00794 * correctly: i.node does not actually point to a node.) The member of 00795 * the %map array is what actually points to the node. 00796 * - i.first == *(i.node) (This points to the node (first Tp element).) 00797 * - i.last == i.first + node_size 00798 * - i.cur is a pointer in the range [i.first, i.last). NOTE: 00799 * the implication of this is that i.cur is always a dereferenceable 00800 * pointer, even if i is a past-the-end iterator. 00801 * - Start and Finish are always nonsingular iterators. NOTE: this 00802 * means that an empty deque must have one node, a deque with <N 00803 * elements (where N is the node buffer size) must have one node, a 00804 * deque with N through (2N-1) elements must have two nodes, etc. 00805 * - For every node other than start.node and finish.node, every 00806 * element in the node is an initialized object. If start.node == 00807 * finish.node, then [start.cur, finish.cur) are initialized 00808 * objects, and the elements outside that range are uninitialized 00809 * storage. Otherwise, [start.cur, start.last) and [finish.first, 00810 * finish.cur) are initialized objects, and [start.first, start.cur) 00811 * and [finish.cur, finish.last) are uninitialized storage. 00812 * - [%map, %map + map_size) is a valid, non-empty range. 00813 * - [start.node, finish.node] is a valid range contained within 00814 * [%map, %map + map_size). 00815 * - A pointer in the range [%map, %map + map_size) points to an allocated 00816 * node if and only if the pointer is in the range 00817 * [start.node, finish.node]. 00818 * 00819 * Here's the magic: nothing in deque is @b aware of the discontiguous 00820 * storage! 00821 * 00822 * The memory setup and layout occurs in the parent, _Base, and the iterator 00823 * class is entirely responsible for @a leaping from one node to the next. 00824 * All the implementation routines for deque itself work only through the 00825 * start and finish iterators. This keeps the routines simple and sane, 00826 * and we can use other standard algorithms as well. 00827 */ 00828 template<typename _Tp, typename _Alloc = std::allocator<_Tp> > 00829 class deque : protected _Deque_base<_Tp, _Alloc> 00830 { 00831 // concept requirements 00832 typedef typename _Alloc::value_type _Alloc_value_type; 00833 #if __cplusplus < 201103L 00834 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00835 #endif 00836 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) 00837 00838 typedef _Deque_base<_Tp, _Alloc> _Base; 00839 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; 00840 typedef typename _Base::_Alloc_traits _Alloc_traits; 00841 typedef typename _Base::_Map_pointer _Map_pointer; 00842 00843 public: 00844 typedef _Tp value_type; 00845 typedef typename _Alloc_traits::pointer pointer; 00846 typedef typename _Alloc_traits::const_pointer const_pointer; 00847 typedef typename _Alloc_traits::reference reference; 00848 typedef typename _Alloc_traits::const_reference const_reference; 00849 typedef typename _Base::iterator iterator; 00850 typedef typename _Base::const_iterator const_iterator; 00851 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00852 typedef std::reverse_iterator<iterator> reverse_iterator; 00853 typedef size_t size_type; 00854 typedef ptrdiff_t difference_type; 00855 typedef _Alloc allocator_type; 00856 00857 protected: 00858 static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT 00859 { return __deque_buf_size(sizeof(_Tp)); } 00860 00861 // Functions controlling memory layout, and nothing else. 00862 using _Base::_M_initialize_map; 00863 using _Base::_M_create_nodes; 00864 using _Base::_M_destroy_nodes; 00865 using _Base::_M_allocate_node; 00866 using _Base::_M_deallocate_node; 00867 using _Base::_M_allocate_map; 00868 using _Base::_M_deallocate_map; 00869 using _Base::_M_get_Tp_allocator; 00870 00871 /** 00872 * A total of four data members accumulated down the hierarchy. 00873 * May be accessed via _M_impl.* 00874 */ 00875 using _Base::_M_impl; 00876 00877 public: 00878 // [23.2.1.1] construct/copy/destroy 00879 // (assign() and get_allocator() are also listed in this section) 00880 00881 /** 00882 * @brief Creates a %deque with no elements. 00883 */ 00884 deque() : _Base() { } 00885 00886 /** 00887 * @brief Creates a %deque with no elements. 00888 * @param __a An allocator object. 00889 */ 00890 explicit 00891 deque(const allocator_type& __a) 00892 : _Base(__a, 0) { } 00893 00894 #if __cplusplus >= 201103L 00895 /** 00896 * @brief Creates a %deque with default constructed elements. 00897 * @param __n The number of elements to initially create. 00898 * @param __a An allocator. 00899 * 00900 * This constructor fills the %deque with @a n default 00901 * constructed elements. 00902 */ 00903 explicit 00904 deque(size_type __n, const allocator_type& __a = allocator_type()) 00905 : _Base(__a, __n) 00906 { _M_default_initialize(); } 00907 00908 /** 00909 * @brief Creates a %deque with copies of an exemplar element. 00910 * @param __n The number of elements to initially create. 00911 * @param __value An element to copy. 00912 * @param __a An allocator. 00913 * 00914 * This constructor fills the %deque with @a __n copies of @a __value. 00915 */ 00916 deque(size_type __n, const value_type& __value, 00917 const allocator_type& __a = allocator_type()) 00918 : _Base(__a, __n) 00919 { _M_fill_initialize(__value); } 00920 #else 00921 /** 00922 * @brief Creates a %deque with copies of an exemplar element. 00923 * @param __n The number of elements to initially create. 00924 * @param __value An element to copy. 00925 * @param __a An allocator. 00926 * 00927 * This constructor fills the %deque with @a __n copies of @a __value. 00928 */ 00929 explicit 00930 deque(size_type __n, const value_type& __value = value_type(), 00931 const allocator_type& __a = allocator_type()) 00932 : _Base(__a, __n) 00933 { _M_fill_initialize(__value); } 00934 #endif 00935 00936 /** 00937 * @brief %Deque copy constructor. 00938 * @param __x A %deque of identical element and allocator types. 00939 * 00940 * The newly-created %deque uses a copy of the allocation object used 00941 * by @a __x. 00942 */ 00943 deque(const deque& __x) 00944 : _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()), 00945 __x.size()) 00946 { std::__uninitialized_copy_a(__x.begin(), __x.end(), 00947 this->_M_impl._M_start, 00948 _M_get_Tp_allocator()); } 00949 00950 #if __cplusplus >= 201103L 00951 /** 00952 * @brief %Deque move constructor. 00953 * @param __x A %deque of identical element and allocator types. 00954 * 00955 * The newly-created %deque contains the exact contents of @a __x. 00956 * The contents of @a __x are a valid, but unspecified %deque. 00957 */ 00958 deque(deque&& __x) 00959 : _Base(std::move(__x)) { } 00960 00961 /// Copy constructor with alternative allocator 00962 deque(const deque& __x, const allocator_type& __a) 00963 : _Base(__a, __x.size()) 00964 { std::__uninitialized_copy_a(__x.begin(), __x.end(), 00965 this->_M_impl._M_start, 00966 _M_get_Tp_allocator()); } 00967 00968 /// Move constructor with alternative allocator 00969 deque(deque&& __x, const allocator_type& __a) 00970 : _Base(std::move(__x), __a, __x.size()) 00971 { 00972 if (__x.get_allocator() != __a) 00973 { 00974 std::__uninitialized_move_a(__x.begin(), __x.end(), 00975 this->_M_impl._M_start, 00976 _M_get_Tp_allocator()); 00977 __x.clear(); 00978 } 00979 } 00980 00981 /** 00982 * @brief Builds a %deque from an initializer list. 00983 * @param __l An initializer_list. 00984 * @param __a An allocator object. 00985 * 00986 * Create a %deque consisting of copies of the elements in the 00987 * initializer_list @a __l. 00988 * 00989 * This will call the element type's copy constructor N times 00990 * (where N is __l.size()) and do no memory reallocation. 00991 */ 00992 deque(initializer_list<value_type> __l, 00993 const allocator_type& __a = allocator_type()) 00994 : _Base(__a) 00995 { 00996 _M_range_initialize(__l.begin(), __l.end(), 00997 random_access_iterator_tag()); 00998 } 00999 #endif 01000 01001 /** 01002 * @brief Builds a %deque from a range. 01003 * @param __first An input iterator. 01004 * @param __last An input iterator. 01005 * @param __a An allocator object. 01006 * 01007 * Create a %deque consisting of copies of the elements from [__first, 01008 * __last). 01009 * 01010 * If the iterators are forward, bidirectional, or random-access, then 01011 * this will call the elements' copy constructor N times (where N is 01012 * distance(__first,__last)) and do no memory reallocation. But if only 01013 * input iterators are used, then this will do at most 2N calls to the 01014 * copy constructor, and logN memory reallocations. 01015 */ 01016 #if __cplusplus >= 201103L 01017 template<typename _InputIterator, 01018 typename = std::_RequireInputIter<_InputIterator>> 01019 deque(_InputIterator __first, _InputIterator __last, 01020 const allocator_type& __a = allocator_type()) 01021 : _Base(__a) 01022 { _M_initialize_dispatch(__first, __last, __false_type()); } 01023 #else 01024 template<typename _InputIterator> 01025 deque(_InputIterator __first, _InputIterator __last, 01026 const allocator_type& __a = allocator_type()) 01027 : _Base(__a) 01028 { 01029 // Check whether it's an integral type. If so, it's not an iterator. 01030 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01031 _M_initialize_dispatch(__first, __last, _Integral()); 01032 } 01033 #endif 01034 01035 /** 01036 * The dtor only erases the elements, and note that if the elements 01037 * themselves are pointers, the pointed-to memory is not touched in any 01038 * way. Managing the pointer is the user's responsibility. 01039 */ 01040 ~deque() 01041 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); } 01042 01043 /** 01044 * @brief %Deque assignment operator. 01045 * @param __x A %deque of identical element and allocator types. 01046 * 01047 * All the elements of @a x are copied, but unlike the copy constructor, 01048 * the allocator object is not copied. 01049 */ 01050 deque& 01051 operator=(const deque& __x); 01052 01053 #if __cplusplus >= 201103L 01054 /** 01055 * @brief %Deque move assignment operator. 01056 * @param __x A %deque of identical element and allocator types. 01057 * 01058 * The contents of @a __x are moved into this deque (without copying, 01059 * if the allocators permit it). 01060 * @a __x is a valid, but unspecified %deque. 01061 */ 01062 deque& 01063 operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal()) 01064 { 01065 using __always_equal = typename _Alloc_traits::is_always_equal; 01066 _M_move_assign1(std::move(__x), __always_equal{}); 01067 return *this; 01068 } 01069 01070 /** 01071 * @brief Assigns an initializer list to a %deque. 01072 * @param __l An initializer_list. 01073 * 01074 * This function fills a %deque with copies of the elements in the 01075 * initializer_list @a __l. 01076 * 01077 * Note that the assignment completely changes the %deque and that the 01078 * resulting %deque's size is the same as the number of elements 01079 * assigned. Old data may be lost. 01080 */ 01081 deque& 01082 operator=(initializer_list<value_type> __l) 01083 { 01084 this->assign(__l.begin(), __l.end()); 01085 return *this; 01086 } 01087 #endif 01088 01089 /** 01090 * @brief Assigns a given value to a %deque. 01091 * @param __n Number of elements to be assigned. 01092 * @param __val Value to be assigned. 01093 * 01094 * This function fills a %deque with @a n copies of the given 01095 * value. Note that the assignment completely changes the 01096 * %deque and that the resulting %deque's size is the same as 01097 * the number of elements assigned. Old data may be lost. 01098 */ 01099 void 01100 assign(size_type __n, const value_type& __val) 01101 { _M_fill_assign(__n, __val); } 01102 01103 /** 01104 * @brief Assigns a range to a %deque. 01105 * @param __first An input iterator. 01106 * @param __last An input iterator. 01107 * 01108 * This function fills a %deque with copies of the elements in the 01109 * range [__first,__last). 01110 * 01111 * Note that the assignment completely changes the %deque and that the 01112 * resulting %deque's size is the same as the number of elements 01113 * assigned. Old data may be lost. 01114 */ 01115 #if __cplusplus >= 201103L 01116 template<typename _InputIterator, 01117 typename = std::_RequireInputIter<_InputIterator>> 01118 void 01119 assign(_InputIterator __first, _InputIterator __last) 01120 { _M_assign_dispatch(__first, __last, __false_type()); } 01121 #else 01122 template<typename _InputIterator> 01123 void 01124 assign(_InputIterator __first, _InputIterator __last) 01125 { 01126 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01127 _M_assign_dispatch(__first, __last, _Integral()); 01128 } 01129 #endif 01130 01131 #if __cplusplus >= 201103L 01132 /** 01133 * @brief Assigns an initializer list to a %deque. 01134 * @param __l An initializer_list. 01135 * 01136 * This function fills a %deque with copies of the elements in the 01137 * initializer_list @a __l. 01138 * 01139 * Note that the assignment completely changes the %deque and that the 01140 * resulting %deque's size is the same as the number of elements 01141 * assigned. Old data may be lost. 01142 */ 01143 void 01144 assign(initializer_list<value_type> __l) 01145 { this->assign(__l.begin(), __l.end()); } 01146 #endif 01147 01148 /// Get a copy of the memory allocation object. 01149 allocator_type 01150 get_allocator() const _GLIBCXX_NOEXCEPT 01151 { return _Base::get_allocator(); } 01152 01153 // iterators 01154 /** 01155 * Returns a read/write iterator that points to the first element in the 01156 * %deque. Iteration is done in ordinary element order. 01157 */ 01158 iterator 01159 begin() _GLIBCXX_NOEXCEPT 01160 { return this->_M_impl._M_start; } 01161 01162 /** 01163 * Returns a read-only (constant) iterator that points to the first 01164 * element in the %deque. Iteration is done in ordinary element order. 01165 */ 01166 const_iterator 01167 begin() const _GLIBCXX_NOEXCEPT 01168 { return this->_M_impl._M_start; } 01169 01170 /** 01171 * Returns a read/write iterator that points one past the last 01172 * element in the %deque. Iteration is done in ordinary 01173 * element order. 01174 */ 01175 iterator 01176 end() _GLIBCXX_NOEXCEPT 01177 { return this->_M_impl._M_finish; } 01178 01179 /** 01180 * Returns a read-only (constant) iterator that points one past 01181 * the last element in the %deque. Iteration is done in 01182 * ordinary element order. 01183 */ 01184 const_iterator 01185 end() const _GLIBCXX_NOEXCEPT 01186 { return this->_M_impl._M_finish; } 01187 01188 /** 01189 * Returns a read/write reverse iterator that points to the 01190 * last element in the %deque. Iteration is done in reverse 01191 * element order. 01192 */ 01193 reverse_iterator 01194 rbegin() _GLIBCXX_NOEXCEPT 01195 { return reverse_iterator(this->_M_impl._M_finish); } 01196 01197 /** 01198 * Returns a read-only (constant) reverse iterator that points 01199 * to the last element in the %deque. Iteration is done in 01200 * reverse element order. 01201 */ 01202 const_reverse_iterator 01203 rbegin() const _GLIBCXX_NOEXCEPT 01204 { return const_reverse_iterator(this->_M_impl._M_finish); } 01205 01206 /** 01207 * Returns a read/write reverse iterator that points to one 01208 * before the first element in the %deque. Iteration is done 01209 * in reverse element order. 01210 */ 01211 reverse_iterator 01212 rend() _GLIBCXX_NOEXCEPT 01213 { return reverse_iterator(this->_M_impl._M_start); } 01214 01215 /** 01216 * Returns a read-only (constant) reverse iterator that points 01217 * to one before the first element in the %deque. Iteration is 01218 * done in reverse element order. 01219 */ 01220 const_reverse_iterator 01221 rend() const _GLIBCXX_NOEXCEPT 01222 { return const_reverse_iterator(this->_M_impl._M_start); } 01223 01224 #if __cplusplus >= 201103L 01225 /** 01226 * Returns a read-only (constant) iterator that points to the first 01227 * element in the %deque. Iteration is done in ordinary element order. 01228 */ 01229 const_iterator 01230 cbegin() const noexcept 01231 { return this->_M_impl._M_start; } 01232 01233 /** 01234 * Returns a read-only (constant) iterator that points one past 01235 * the last element in the %deque. Iteration is done in 01236 * ordinary element order. 01237 */ 01238 const_iterator 01239 cend() const noexcept 01240 { return this->_M_impl._M_finish; } 01241 01242 /** 01243 * Returns a read-only (constant) reverse iterator that points 01244 * to the last element in the %deque. Iteration is done in 01245 * reverse element order. 01246 */ 01247 const_reverse_iterator 01248 crbegin() const noexcept 01249 { return const_reverse_iterator(this->_M_impl._M_finish); } 01250 01251 /** 01252 * Returns a read-only (constant) reverse iterator that points 01253 * to one before the first element in the %deque. Iteration is 01254 * done in reverse element order. 01255 */ 01256 const_reverse_iterator 01257 crend() const noexcept 01258 { return const_reverse_iterator(this->_M_impl._M_start); } 01259 #endif 01260 01261 // [23.2.1.2] capacity 01262 /** Returns the number of elements in the %deque. */ 01263 size_type 01264 size() const _GLIBCXX_NOEXCEPT 01265 { return this->_M_impl._M_finish - this->_M_impl._M_start; } 01266 01267 /** Returns the size() of the largest possible %deque. */ 01268 size_type 01269 max_size() const _GLIBCXX_NOEXCEPT 01270 { return _Alloc_traits::max_size(_M_get_Tp_allocator()); } 01271 01272 #if __cplusplus >= 201103L 01273 /** 01274 * @brief Resizes the %deque to the specified number of elements. 01275 * @param __new_size Number of elements the %deque should contain. 01276 * 01277 * This function will %resize the %deque to the specified 01278 * number of elements. If the number is smaller than the 01279 * %deque's current size the %deque is truncated, otherwise 01280 * default constructed elements are appended. 01281 */ 01282 void 01283 resize(size_type __new_size) 01284 { 01285 const size_type __len = size(); 01286 if (__new_size > __len) 01287 _M_default_append(__new_size - __len); 01288 else if (__new_size < __len) 01289 _M_erase_at_end(this->_M_impl._M_start 01290 + difference_type(__new_size)); 01291 } 01292 01293 /** 01294 * @brief Resizes the %deque to the specified number of elements. 01295 * @param __new_size Number of elements the %deque should contain. 01296 * @param __x Data with which new elements should be populated. 01297 * 01298 * This function will %resize the %deque to the specified 01299 * number of elements. If the number is smaller than the 01300 * %deque's current size the %deque is truncated, otherwise the 01301 * %deque is extended and new elements are populated with given 01302 * data. 01303 */ 01304 void 01305 resize(size_type __new_size, const value_type& __x) 01306 { 01307 const size_type __len = size(); 01308 if (__new_size > __len) 01309 insert(this->_M_impl._M_finish, __new_size - __len, __x); 01310 else if (__new_size < __len) 01311 _M_erase_at_end(this->_M_impl._M_start 01312 + difference_type(__new_size)); 01313 } 01314 #else 01315 /** 01316 * @brief Resizes the %deque to the specified number of elements. 01317 * @param __new_size Number of elements the %deque should contain. 01318 * @param __x Data with which new elements should be populated. 01319 * 01320 * This function will %resize the %deque to the specified 01321 * number of elements. If the number is smaller than the 01322 * %deque's current size the %deque is truncated, otherwise the 01323 * %deque is extended and new elements are populated with given 01324 * data. 01325 */ 01326 void 01327 resize(size_type __new_size, value_type __x = value_type()) 01328 { 01329 const size_type __len = size(); 01330 if (__new_size > __len) 01331 insert(this->_M_impl._M_finish, __new_size - __len, __x); 01332 else if (__new_size < __len) 01333 _M_erase_at_end(this->_M_impl._M_start 01334 + difference_type(__new_size)); 01335 } 01336 #endif 01337 01338 #if __cplusplus >= 201103L 01339 /** A non-binding request to reduce memory use. */ 01340 void 01341 shrink_to_fit() noexcept 01342 { _M_shrink_to_fit(); } 01343 #endif 01344 01345 /** 01346 * Returns true if the %deque is empty. (Thus begin() would 01347 * equal end().) 01348 */ 01349 bool 01350 empty() const _GLIBCXX_NOEXCEPT 01351 { return this->_M_impl._M_finish == this->_M_impl._M_start; } 01352 01353 // element access 01354 /** 01355 * @brief Subscript access to the data contained in the %deque. 01356 * @param __n The index of the element for which data should be 01357 * accessed. 01358 * @return Read/write reference to data. 01359 * 01360 * This operator allows for easy, array-style, data access. 01361 * Note that data access with this operator is unchecked and 01362 * out_of_range lookups are not defined. (For checked lookups 01363 * see at().) 01364 */ 01365 reference 01366 operator[](size_type __n) _GLIBCXX_NOEXCEPT 01367 { return this->_M_impl._M_start[difference_type(__n)]; } 01368 01369 /** 01370 * @brief Subscript access to the data contained in the %deque. 01371 * @param __n The index of the element for which data should be 01372 * accessed. 01373 * @return Read-only (constant) reference to data. 01374 * 01375 * This operator allows for easy, array-style, data access. 01376 * Note that data access with this operator is unchecked and 01377 * out_of_range lookups are not defined. (For checked lookups 01378 * see at().) 01379 */ 01380 const_reference 01381 operator[](size_type __n) const _GLIBCXX_NOEXCEPT 01382 { return this->_M_impl._M_start[difference_type(__n)]; } 01383 01384 protected: 01385 /// Safety check used only from at(). 01386 void 01387 _M_range_check(size_type __n) const 01388 { 01389 if (__n >= this->size()) 01390 __throw_out_of_range_fmt(__N("deque::_M_range_check: __n " 01391 "(which is %zu)>= this->size() " 01392 "(which is %zu)"), 01393 __n, this->size()); 01394 } 01395 01396 public: 01397 /** 01398 * @brief Provides access to the data contained in the %deque. 01399 * @param __n The index of the element for which data should be 01400 * accessed. 01401 * @return Read/write reference to data. 01402 * @throw std::out_of_range If @a __n is an invalid index. 01403 * 01404 * This function provides for safer data access. The parameter 01405 * is first checked that it is in the range of the deque. The 01406 * function throws out_of_range if the check fails. 01407 */ 01408 reference 01409 at(size_type __n) 01410 { 01411 _M_range_check(__n); 01412 return (*this)[__n]; 01413 } 01414 01415 /** 01416 * @brief Provides access to the data contained in the %deque. 01417 * @param __n The index of the element for which data should be 01418 * accessed. 01419 * @return Read-only (constant) reference to data. 01420 * @throw std::out_of_range If @a __n is an invalid index. 01421 * 01422 * This function provides for safer data access. The parameter is first 01423 * checked that it is in the range of the deque. The function throws 01424 * out_of_range if the check fails. 01425 */ 01426 const_reference 01427 at(size_type __n) const 01428 { 01429 _M_range_check(__n); 01430 return (*this)[__n]; 01431 } 01432 01433 /** 01434 * Returns a read/write reference to the data at the first 01435 * element of the %deque. 01436 */ 01437 reference 01438 front() _GLIBCXX_NOEXCEPT 01439 { return *begin(); } 01440 01441 /** 01442 * Returns a read-only (constant) reference to the data at the first 01443 * element of the %deque. 01444 */ 01445 const_reference 01446 front() const _GLIBCXX_NOEXCEPT 01447 { return *begin(); } 01448 01449 /** 01450 * Returns a read/write reference to the data at the last element of the 01451 * %deque. 01452 */ 01453 reference 01454 back() _GLIBCXX_NOEXCEPT 01455 { 01456 iterator __tmp = end(); 01457 --__tmp; 01458 return *__tmp; 01459 } 01460 01461 /** 01462 * Returns a read-only (constant) reference to the data at the last 01463 * element of the %deque. 01464 */ 01465 const_reference 01466 back() const _GLIBCXX_NOEXCEPT 01467 { 01468 const_iterator __tmp = end(); 01469 --__tmp; 01470 return *__tmp; 01471 } 01472 01473 // [23.2.1.2] modifiers 01474 /** 01475 * @brief Add data to the front of the %deque. 01476 * @param __x Data to be added. 01477 * 01478 * This is a typical stack operation. The function creates an 01479 * element at the front of the %deque and assigns the given 01480 * data to it. Due to the nature of a %deque this operation 01481 * can be done in constant time. 01482 */ 01483 void 01484 push_front(const value_type& __x) 01485 { 01486 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) 01487 { 01488 _Alloc_traits::construct(this->_M_impl, 01489 this->_M_impl._M_start._M_cur - 1, 01490 __x); 01491 --this->_M_impl._M_start._M_cur; 01492 } 01493 else 01494 _M_push_front_aux(__x); 01495 } 01496 01497 #if __cplusplus >= 201103L 01498 void 01499 push_front(value_type&& __x) 01500 { emplace_front(std::move(__x)); } 01501 01502 template<typename... _Args> 01503 void 01504 emplace_front(_Args&&... __args); 01505 #endif 01506 01507 /** 01508 * @brief Add data to the end of the %deque. 01509 * @param __x Data to be added. 01510 * 01511 * This is a typical stack operation. The function creates an 01512 * element at the end of the %deque and assigns the given data 01513 * to it. Due to the nature of a %deque this operation can be 01514 * done in constant time. 01515 */ 01516 void 01517 push_back(const value_type& __x) 01518 { 01519 if (this->_M_impl._M_finish._M_cur 01520 != this->_M_impl._M_finish._M_last - 1) 01521 { 01522 _Alloc_traits::construct(this->_M_impl, 01523 this->_M_impl._M_finish._M_cur, __x); 01524 ++this->_M_impl._M_finish._M_cur; 01525 } 01526 else 01527 _M_push_back_aux(__x); 01528 } 01529 01530 #if __cplusplus >= 201103L 01531 void 01532 push_back(value_type&& __x) 01533 { emplace_back(std::move(__x)); } 01534 01535 template<typename... _Args> 01536 void 01537 emplace_back(_Args&&... __args); 01538 #endif 01539 01540 /** 01541 * @brief Removes first element. 01542 * 01543 * This is a typical stack operation. It shrinks the %deque by one. 01544 * 01545 * Note that no data is returned, and if the first element's data is 01546 * needed, it should be retrieved before pop_front() is called. 01547 */ 01548 void 01549 pop_front() _GLIBCXX_NOEXCEPT 01550 { 01551 if (this->_M_impl._M_start._M_cur 01552 != this->_M_impl._M_start._M_last - 1) 01553 { 01554 _Alloc_traits::destroy(this->_M_impl, 01555 this->_M_impl._M_start._M_cur); 01556 ++this->_M_impl._M_start._M_cur; 01557 } 01558 else 01559 _M_pop_front_aux(); 01560 } 01561 01562 /** 01563 * @brief Removes last element. 01564 * 01565 * This is a typical stack operation. It shrinks the %deque by one. 01566 * 01567 * Note that no data is returned, and if the last element's data is 01568 * needed, it should be retrieved before pop_back() is called. 01569 */ 01570 void 01571 pop_back() _GLIBCXX_NOEXCEPT 01572 { 01573 if (this->_M_impl._M_finish._M_cur 01574 != this->_M_impl._M_finish._M_first) 01575 { 01576 --this->_M_impl._M_finish._M_cur; 01577 _Alloc_traits::destroy(this->_M_impl, 01578 this->_M_impl._M_finish._M_cur); 01579 } 01580 else 01581 _M_pop_back_aux(); 01582 } 01583 01584 #if __cplusplus >= 201103L 01585 /** 01586 * @brief Inserts an object in %deque before specified iterator. 01587 * @param __position A const_iterator into the %deque. 01588 * @param __args Arguments. 01589 * @return An iterator that points to the inserted data. 01590 * 01591 * This function will insert an object of type T constructed 01592 * with T(std::forward<Args>(args)...) before the specified location. 01593 */ 01594 template<typename... _Args> 01595 iterator 01596 emplace(const_iterator __position, _Args&&... __args); 01597 01598 /** 01599 * @brief Inserts given value into %deque before specified iterator. 01600 * @param __position A const_iterator into the %deque. 01601 * @param __x Data to be inserted. 01602 * @return An iterator that points to the inserted data. 01603 * 01604 * This function will insert a copy of the given value before the 01605 * specified location. 01606 */ 01607 iterator 01608 insert(const_iterator __position, const value_type& __x); 01609 #else 01610 /** 01611 * @brief Inserts given value into %deque before specified iterator. 01612 * @param __position An iterator into the %deque. 01613 * @param __x Data to be inserted. 01614 * @return An iterator that points to the inserted data. 01615 * 01616 * This function will insert a copy of the given value before the 01617 * specified location. 01618 */ 01619 iterator 01620 insert(iterator __position, const value_type& __x); 01621 #endif 01622 01623 #if __cplusplus >= 201103L 01624 /** 01625 * @brief Inserts given rvalue into %deque before specified iterator. 01626 * @param __position A const_iterator into the %deque. 01627 * @param __x Data to be inserted. 01628 * @return An iterator that points to the inserted data. 01629 * 01630 * This function will insert a copy of the given rvalue before the 01631 * specified location. 01632 */ 01633 iterator 01634 insert(const_iterator __position, value_type&& __x) 01635 { return emplace(__position, std::move(__x)); } 01636 01637 /** 01638 * @brief Inserts an initializer list into the %deque. 01639 * @param __p An iterator into the %deque. 01640 * @param __l An initializer_list. 01641 * 01642 * This function will insert copies of the data in the 01643 * initializer_list @a __l into the %deque before the location 01644 * specified by @a __p. This is known as <em>list insert</em>. 01645 */ 01646 iterator 01647 insert(const_iterator __p, initializer_list<value_type> __l) 01648 { return this->insert(__p, __l.begin(), __l.end()); } 01649 #endif 01650 01651 #if __cplusplus >= 201103L 01652 /** 01653 * @brief Inserts a number of copies of given data into the %deque. 01654 * @param __position A const_iterator into the %deque. 01655 * @param __n Number of elements to be inserted. 01656 * @param __x Data to be inserted. 01657 * @return An iterator that points to the inserted data. 01658 * 01659 * This function will insert a specified number of copies of the given 01660 * data before the location specified by @a __position. 01661 */ 01662 iterator 01663 insert(const_iterator __position, size_type __n, const value_type& __x) 01664 { 01665 difference_type __offset = __position - cbegin(); 01666 _M_fill_insert(__position._M_const_cast(), __n, __x); 01667 return begin() + __offset; 01668 } 01669 #else 01670 /** 01671 * @brief Inserts a number of copies of given data into the %deque. 01672 * @param __position An iterator into the %deque. 01673 * @param __n Number of elements to be inserted. 01674 * @param __x Data to be inserted. 01675 * 01676 * This function will insert a specified number of copies of the given 01677 * data before the location specified by @a __position. 01678 */ 01679 void 01680 insert(iterator __position, size_type __n, const value_type& __x) 01681 { _M_fill_insert(__position, __n, __x); } 01682 #endif 01683 01684 #if __cplusplus >= 201103L 01685 /** 01686 * @brief Inserts a range into the %deque. 01687 * @param __position A const_iterator into the %deque. 01688 * @param __first An input iterator. 01689 * @param __last An input iterator. 01690 * @return An iterator that points to the inserted data. 01691 * 01692 * This function will insert copies of the data in the range 01693 * [__first,__last) into the %deque before the location specified 01694 * by @a __position. This is known as <em>range insert</em>. 01695 */ 01696 template<typename _InputIterator, 01697 typename = std::_RequireInputIter<_InputIterator>> 01698 iterator 01699 insert(const_iterator __position, _InputIterator __first, 01700 _InputIterator __last) 01701 { 01702 difference_type __offset = __position - cbegin(); 01703 _M_insert_dispatch(__position._M_const_cast(), 01704 __first, __last, __false_type()); 01705 return begin() + __offset; 01706 } 01707 #else 01708 /** 01709 * @brief Inserts a range into the %deque. 01710 * @param __position An iterator into the %deque. 01711 * @param __first An input iterator. 01712 * @param __last An input iterator. 01713 * 01714 * This function will insert copies of the data in the range 01715 * [__first,__last) into the %deque before the location specified 01716 * by @a __position. This is known as <em>range insert</em>. 01717 */ 01718 template<typename _InputIterator> 01719 void 01720 insert(iterator __position, _InputIterator __first, 01721 _InputIterator __last) 01722 { 01723 // Check whether it's an integral type. If so, it's not an iterator. 01724 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01725 _M_insert_dispatch(__position, __first, __last, _Integral()); 01726 } 01727 #endif 01728 01729 /** 01730 * @brief Remove element at given position. 01731 * @param __position Iterator pointing to element to be erased. 01732 * @return An iterator pointing to the next element (or end()). 01733 * 01734 * This function will erase the element at the given position and thus 01735 * shorten the %deque by one. 01736 * 01737 * The user is cautioned that 01738 * this function only erases the element, and that if the element is 01739 * itself a pointer, the pointed-to memory is not touched in any way. 01740 * Managing the pointer is the user's responsibility. 01741 */ 01742 iterator 01743 #if __cplusplus >= 201103L 01744 erase(const_iterator __position) 01745 #else 01746 erase(iterator __position) 01747 #endif 01748 { return _M_erase(__position._M_const_cast()); } 01749 01750 /** 01751 * @brief Remove a range of elements. 01752 * @param __first Iterator pointing to the first element to be erased. 01753 * @param __last Iterator pointing to one past the last element to be 01754 * erased. 01755 * @return An iterator pointing to the element pointed to by @a last 01756 * prior to erasing (or end()). 01757 * 01758 * This function will erase the elements in the range 01759 * [__first,__last) and shorten the %deque accordingly. 01760 * 01761 * The user is cautioned that 01762 * this function only erases the elements, and that if the elements 01763 * themselves are pointers, the pointed-to memory is not touched in any 01764 * way. Managing the pointer is the user's responsibility. 01765 */ 01766 iterator 01767 #if __cplusplus >= 201103L 01768 erase(const_iterator __first, const_iterator __last) 01769 #else 01770 erase(iterator __first, iterator __last) 01771 #endif 01772 { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); } 01773 01774 /** 01775 * @brief Swaps data with another %deque. 01776 * @param __x A %deque of the same element and allocator types. 01777 * 01778 * This exchanges the elements between two deques in constant time. 01779 * (Four pointers, so it should be quite fast.) 01780 * Note that the global std::swap() function is specialized such that 01781 * std::swap(d1,d2) will feed to this function. 01782 */ 01783 void 01784 swap(deque& __x) _GLIBCXX_NOEXCEPT 01785 { 01786 _M_impl._M_swap_data(__x._M_impl); 01787 _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(), 01788 __x._M_get_Tp_allocator()); 01789 } 01790 01791 /** 01792 * Erases all the elements. Note that this function only erases the 01793 * elements, and that if the elements themselves are pointers, the 01794 * pointed-to memory is not touched in any way. Managing the pointer is 01795 * the user's responsibility. 01796 */ 01797 void 01798 clear() _GLIBCXX_NOEXCEPT 01799 { _M_erase_at_end(begin()); } 01800 01801 protected: 01802 // Internal constructor functions follow. 01803 01804 // called by the range constructor to implement [23.1.1]/9 01805 01806 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01807 // 438. Ambiguity in the "do the right thing" clause 01808 template<typename _Integer> 01809 void 01810 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 01811 { 01812 _M_initialize_map(static_cast<size_type>(__n)); 01813 _M_fill_initialize(__x); 01814 } 01815 01816 // called by the range constructor to implement [23.1.1]/9 01817 template<typename _InputIterator> 01818 void 01819 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 01820 __false_type) 01821 { 01822 typedef typename std::iterator_traits<_InputIterator>:: 01823 iterator_category _IterCategory; 01824 _M_range_initialize(__first, __last, _IterCategory()); 01825 } 01826 01827 // called by the second initialize_dispatch above 01828 //@{ 01829 /** 01830 * @brief Fills the deque with whatever is in [first,last). 01831 * @param __first An input iterator. 01832 * @param __last An input iterator. 01833 * @return Nothing. 01834 * 01835 * If the iterators are actually forward iterators (or better), then the 01836 * memory layout can be done all at once. Else we move forward using 01837 * push_back on each value from the iterator. 01838 */ 01839 template<typename _InputIterator> 01840 void 01841 _M_range_initialize(_InputIterator __first, _InputIterator __last, 01842 std::input_iterator_tag); 01843 01844 // called by the second initialize_dispatch above 01845 template<typename _ForwardIterator> 01846 void 01847 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, 01848 std::forward_iterator_tag); 01849 //@} 01850 01851 /** 01852 * @brief Fills the %deque with copies of value. 01853 * @param __value Initial value. 01854 * @return Nothing. 01855 * @pre _M_start and _M_finish have already been initialized, 01856 * but none of the %deque's elements have yet been constructed. 01857 * 01858 * This function is called only when the user provides an explicit size 01859 * (with or without an explicit exemplar value). 01860 */ 01861 void 01862 _M_fill_initialize(const value_type& __value); 01863 01864 #if __cplusplus >= 201103L 01865 // called by deque(n). 01866 void 01867 _M_default_initialize(); 01868 #endif 01869 01870 // Internal assign functions follow. The *_aux functions do the actual 01871 // assignment work for the range versions. 01872 01873 // called by the range assign to implement [23.1.1]/9 01874 01875 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01876 // 438. Ambiguity in the "do the right thing" clause 01877 template<typename _Integer> 01878 void 01879 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01880 { _M_fill_assign(__n, __val); } 01881 01882 // called by the range assign to implement [23.1.1]/9 01883 template<typename _InputIterator> 01884 void 01885 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01886 __false_type) 01887 { 01888 typedef typename std::iterator_traits<_InputIterator>:: 01889 iterator_category _IterCategory; 01890 _M_assign_aux(__first, __last, _IterCategory()); 01891 } 01892 01893 // called by the second assign_dispatch above 01894 template<typename _InputIterator> 01895 void 01896 _M_assign_aux(_InputIterator __first, _InputIterator __last, 01897 std::input_iterator_tag); 01898 01899 // called by the second assign_dispatch above 01900 template<typename _ForwardIterator> 01901 void 01902 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, 01903 std::forward_iterator_tag) 01904 { 01905 const size_type __len = std::distance(__first, __last); 01906 if (__len > size()) 01907 { 01908 _ForwardIterator __mid = __first; 01909 std::advance(__mid, size()); 01910 std::copy(__first, __mid, begin()); 01911 insert(end(), __mid, __last); 01912 } 01913 else 01914 _M_erase_at_end(std::copy(__first, __last, begin())); 01915 } 01916 01917 // Called by assign(n,t), and the range assign when it turns out 01918 // to be the same thing. 01919 void 01920 _M_fill_assign(size_type __n, const value_type& __val) 01921 { 01922 if (__n > size()) 01923 { 01924 std::fill(begin(), end(), __val); 01925 insert(end(), __n - size(), __val); 01926 } 01927 else 01928 { 01929 _M_erase_at_end(begin() + difference_type(__n)); 01930 std::fill(begin(), end(), __val); 01931 } 01932 } 01933 01934 //@{ 01935 /// Helper functions for push_* and pop_*. 01936 #if __cplusplus < 201103L 01937 void _M_push_back_aux(const value_type&); 01938 01939 void _M_push_front_aux(const value_type&); 01940 #else 01941 template<typename... _Args> 01942 void _M_push_back_aux(_Args&&... __args); 01943 01944 template<typename... _Args> 01945 void _M_push_front_aux(_Args&&... __args); 01946 #endif 01947 01948 void _M_pop_back_aux(); 01949 01950 void _M_pop_front_aux(); 01951 //@} 01952 01953 // Internal insert functions follow. The *_aux functions do the actual 01954 // insertion work when all shortcuts fail. 01955 01956 // called by the range insert to implement [23.1.1]/9 01957 01958 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01959 // 438. Ambiguity in the "do the right thing" clause 01960 template<typename _Integer> 01961 void 01962 _M_insert_dispatch(iterator __pos, 01963 _Integer __n, _Integer __x, __true_type) 01964 { _M_fill_insert(__pos, __n, __x); } 01965 01966 // called by the range insert to implement [23.1.1]/9 01967 template<typename _InputIterator> 01968 void 01969 _M_insert_dispatch(iterator __pos, 01970 _InputIterator __first, _InputIterator __last, 01971 __false_type) 01972 { 01973 typedef typename std::iterator_traits<_InputIterator>:: 01974 iterator_category _IterCategory; 01975 _M_range_insert_aux(__pos, __first, __last, _IterCategory()); 01976 } 01977 01978 // called by the second insert_dispatch above 01979 template<typename _InputIterator> 01980 void 01981 _M_range_insert_aux(iterator __pos, _InputIterator __first, 01982 _InputIterator __last, std::input_iterator_tag); 01983 01984 // called by the second insert_dispatch above 01985 template<typename _ForwardIterator> 01986 void 01987 _M_range_insert_aux(iterator __pos, _ForwardIterator __first, 01988 _ForwardIterator __last, std::forward_iterator_tag); 01989 01990 // Called by insert(p,n,x), and the range insert when it turns out to be 01991 // the same thing. Can use fill functions in optimal situations, 01992 // otherwise passes off to insert_aux(p,n,x). 01993 void 01994 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 01995 01996 // called by insert(p,x) 01997 #if __cplusplus < 201103L 01998 iterator 01999 _M_insert_aux(iterator __pos, const value_type& __x); 02000 #else 02001 template<typename... _Args> 02002 iterator 02003 _M_insert_aux(iterator __pos, _Args&&... __args); 02004 #endif 02005 02006 // called by insert(p,n,x) via fill_insert 02007 void 02008 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); 02009 02010 // called by range_insert_aux for forward iterators 02011 template<typename _ForwardIterator> 02012 void 02013 _M_insert_aux(iterator __pos, 02014 _ForwardIterator __first, _ForwardIterator __last, 02015 size_type __n); 02016 02017 02018 // Internal erase functions follow. 02019 02020 void 02021 _M_destroy_data_aux(iterator __first, iterator __last); 02022 02023 // Called by ~deque(). 02024 // NB: Doesn't deallocate the nodes. 02025 template<typename _Alloc1> 02026 void 02027 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&) 02028 { _M_destroy_data_aux(__first, __last); } 02029 02030 void 02031 _M_destroy_data(iterator __first, iterator __last, 02032 const std::allocator<_Tp>&) 02033 { 02034 if (!__has_trivial_destructor(value_type)) 02035 _M_destroy_data_aux(__first, __last); 02036 } 02037 02038 // Called by erase(q1, q2). 02039 void 02040 _M_erase_at_begin(iterator __pos) 02041 { 02042 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator()); 02043 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node); 02044 this->_M_impl._M_start = __pos; 02045 } 02046 02047 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux, 02048 // _M_fill_assign, operator=. 02049 void 02050 _M_erase_at_end(iterator __pos) 02051 { 02052 _M_destroy_data(__pos, end(), _M_get_Tp_allocator()); 02053 _M_destroy_nodes(__pos._M_node + 1, 02054 this->_M_impl._M_finish._M_node + 1); 02055 this->_M_impl._M_finish = __pos; 02056 } 02057 02058 iterator 02059 _M_erase(iterator __pos); 02060 02061 iterator 02062 _M_erase(iterator __first, iterator __last); 02063 02064 #if __cplusplus >= 201103L 02065 // Called by resize(sz). 02066 void 02067 _M_default_append(size_type __n); 02068 02069 bool 02070 _M_shrink_to_fit(); 02071 #endif 02072 02073 //@{ 02074 /// Memory-handling helpers for the previous internal insert functions. 02075 iterator 02076 _M_reserve_elements_at_front(size_type __n) 02077 { 02078 const size_type __vacancies = this->_M_impl._M_start._M_cur 02079 - this->_M_impl._M_start._M_first; 02080 if (__n > __vacancies) 02081 _M_new_elements_at_front(__n - __vacancies); 02082 return this->_M_impl._M_start - difference_type(__n); 02083 } 02084 02085 iterator 02086 _M_reserve_elements_at_back(size_type __n) 02087 { 02088 const size_type __vacancies = (this->_M_impl._M_finish._M_last 02089 - this->_M_impl._M_finish._M_cur) - 1; 02090 if (__n > __vacancies) 02091 _M_new_elements_at_back(__n - __vacancies); 02092 return this->_M_impl._M_finish + difference_type(__n); 02093 } 02094 02095 void 02096 _M_new_elements_at_front(size_type __new_elements); 02097 02098 void 02099 _M_new_elements_at_back(size_type __new_elements); 02100 //@} 02101 02102 02103 //@{ 02104 /** 02105 * @brief Memory-handling helpers for the major %map. 02106 * 02107 * Makes sure the _M_map has space for new nodes. Does not 02108 * actually add the nodes. Can invalidate _M_map pointers. 02109 * (And consequently, %deque iterators.) 02110 */ 02111 void 02112 _M_reserve_map_at_back(size_type __nodes_to_add = 1) 02113 { 02114 if (__nodes_to_add + 1 > this->_M_impl._M_map_size 02115 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) 02116 _M_reallocate_map(__nodes_to_add, false); 02117 } 02118 02119 void 02120 _M_reserve_map_at_front(size_type __nodes_to_add = 1) 02121 { 02122 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node 02123 - this->_M_impl._M_map)) 02124 _M_reallocate_map(__nodes_to_add, true); 02125 } 02126 02127 void 02128 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); 02129 //@} 02130 02131 #if __cplusplus >= 201103L 02132 // Constant-time, nothrow move assignment when source object's memory 02133 // can be moved because the allocators are equal. 02134 void 02135 _M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept 02136 { 02137 this->_M_impl._M_swap_data(__x._M_impl); 02138 __x.clear(); 02139 std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator()); 02140 } 02141 02142 // When the allocators are not equal the operation could throw, because 02143 // we might need to allocate a new map for __x after moving from it 02144 // or we might need to allocate new elements for *this. 02145 void 02146 _M_move_assign1(deque&& __x, /* always equal: */ false_type) 02147 { 02148 constexpr bool __move_storage = 02149 _Alloc_traits::_S_propagate_on_move_assign(); 02150 _M_move_assign2(std::move(__x), __bool_constant<__move_storage>()); 02151 } 02152 02153 // Destroy all elements and deallocate all memory, then replace 02154 // with elements created from __args. 02155 template<typename... _Args> 02156 void 02157 _M_replace_map(_Args&&... __args) 02158 { 02159 // Create new data first, so if allocation fails there are no effects. 02160 deque __newobj(std::forward<_Args>(__args)...); 02161 // Free existing storage using existing allocator. 02162 clear(); 02163 _M_deallocate_node(*begin()._M_node); // one node left after clear() 02164 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 02165 this->_M_impl._M_map = nullptr; 02166 this->_M_impl._M_map_size = 0; 02167 // Take ownership of replacement memory. 02168 this->_M_impl._M_swap_data(__newobj._M_impl); 02169 } 02170 02171 // Do move assignment when the allocator propagates. 02172 void 02173 _M_move_assign2(deque&& __x, /* propagate: */ true_type) 02174 { 02175 // Make a copy of the original allocator state. 02176 auto __alloc = __x._M_get_Tp_allocator(); 02177 // The allocator propagates so storage can be moved from __x, 02178 // leaving __x in a valid empty state with a moved-from allocator. 02179 _M_replace_map(std::move(__x)); 02180 // Move the corresponding allocator state too. 02181 _M_get_Tp_allocator() = std::move(__alloc); 02182 } 02183 02184 // Do move assignment when it may not be possible to move source 02185 // object's memory, resulting in a linear-time operation. 02186 void 02187 _M_move_assign2(deque&& __x, /* propagate: */ false_type) 02188 { 02189 if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator()) 02190 { 02191 // The allocators are equal so storage can be moved from __x, 02192 // leaving __x in a valid empty state with its current allocator. 02193 _M_replace_map(std::move(__x), __x.get_allocator()); 02194 } 02195 else 02196 { 02197 // The rvalue's allocator cannot be moved and is not equal, 02198 // so we need to individually move each element. 02199 this->assign(std::__make_move_if_noexcept_iterator(__x.begin()), 02200 std::__make_move_if_noexcept_iterator(__x.end())); 02201 __x.clear(); 02202 } 02203 } 02204 #endif 02205 }; 02206 02207 02208 /** 02209 * @brief Deque equality comparison. 02210 * @param __x A %deque. 02211 * @param __y A %deque of the same type as @a __x. 02212 * @return True iff the size and elements of the deques are equal. 02213 * 02214 * This is an equivalence relation. It is linear in the size of the 02215 * deques. Deques are considered equivalent if their sizes are equal, 02216 * and if corresponding elements compare equal. 02217 */ 02218 template<typename _Tp, typename _Alloc> 02219 inline bool 02220 operator==(const deque<_Tp, _Alloc>& __x, 02221 const deque<_Tp, _Alloc>& __y) 02222 { return __x.size() == __y.size() 02223 && std::equal(__x.begin(), __x.end(), __y.begin()); } 02224 02225 /** 02226 * @brief Deque ordering relation. 02227 * @param __x A %deque. 02228 * @param __y A %deque of the same type as @a __x. 02229 * @return True iff @a x is lexicographically less than @a __y. 02230 * 02231 * This is a total ordering relation. It is linear in the size of the 02232 * deques. The elements must be comparable with @c <. 02233 * 02234 * See std::lexicographical_compare() for how the determination is made. 02235 */ 02236 template<typename _Tp, typename _Alloc> 02237 inline bool 02238 operator<(const deque<_Tp, _Alloc>& __x, 02239 const deque<_Tp, _Alloc>& __y) 02240 { return std::lexicographical_compare(__x.begin(), __x.end(), 02241 __y.begin(), __y.end()); } 02242 02243 /// Based on operator== 02244 template<typename _Tp, typename _Alloc> 02245 inline bool 02246 operator!=(const deque<_Tp, _Alloc>& __x, 02247 const deque<_Tp, _Alloc>& __y) 02248 { return !(__x == __y); } 02249 02250 /// Based on operator< 02251 template<typename _Tp, typename _Alloc> 02252 inline bool 02253 operator>(const deque<_Tp, _Alloc>& __x, 02254 const deque<_Tp, _Alloc>& __y) 02255 { return __y < __x; } 02256 02257 /// Based on operator< 02258 template<typename _Tp, typename _Alloc> 02259 inline bool 02260 operator<=(const deque<_Tp, _Alloc>& __x, 02261 const deque<_Tp, _Alloc>& __y) 02262 { return !(__y < __x); } 02263 02264 /// Based on operator< 02265 template<typename _Tp, typename _Alloc> 02266 inline bool 02267 operator>=(const deque<_Tp, _Alloc>& __x, 02268 const deque<_Tp, _Alloc>& __y) 02269 { return !(__x < __y); } 02270 02271 /// See std::deque::swap(). 02272 template<typename _Tp, typename _Alloc> 02273 inline void 02274 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) 02275 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) 02276 { __x.swap(__y); } 02277 02278 #undef _GLIBCXX_DEQUE_BUF_SIZE 02279 02280 _GLIBCXX_END_NAMESPACE_CONTAINER 02281 } // namespace std 02282 02283 #endif /* _STL_DEQUE_H */